

Build Your Own
Quadcopter

This page intentionally left blank

Build Your Own
Quadcopter

Power Up Your Designs with
the Parallax Elev-8

Donald Norris

New York Chicago San Francisco
 Athens London Madrid

Mexico City Milan New Delhi
Singapore Sydney Toronto

Copyright © 2014 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.

ISBN: 978-0-07-182232-9

MHID: 0-07-182232-1

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-182228-2,
MHID: 0-07-182228-3.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate
training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

McGraw-Hill Education, the McGraw-Hill Education logo, TAB, and related trade dress are trademarks or registered trademarks of McGraw-Hill
Education and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the
property of their respective owners. McGraw-Hill Education is not associated with any product or vendor mentioned in this book.

Information contained in this work has been obtained by McGraw-Hill Education from sources believed to be reliable. However, neither
McGraw-Hill Education nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw-Hill
Education nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published
with the understanding that McGraw-Hill Education and its authors are supplying information but are not attempting to render engineering or other
professional services. If such services are required, the assistance of an appropriate professional should be sought.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile,
disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense
the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT IMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free.
Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause,
in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility
of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

http://www.mhprofessional.com

To my wife Karen for her continuing and unwavering love and support despite the
onslaught of spontaneous lectures from yours truly.

To my children Shauna, Heath, and Derek who, while loving and supporting me,
would never put up with my lectures as adults.

This page intentionally left blank

About the Author
Donald Norris has a degree in electrical engineering and an
MBA specializing in production management. He is currently
teaching undergrad and grad courses in the IT subject area at
Southern New Hampshire University. He has also created and
taught several robotics courses there. He has over 30 years
of teaching experience as an adjunct professor at a variety of
colleges and universities.

Mr. Norris retired from civilian government service with
the U.S. Navy, where he specialized in acoustics related to
nuclear submarines and associated advanced digital signal
processing. Since then, he has spent more than 17 years as a
professional software developer using C, C#, C++, Python, and
Java, as well as 5 years as a certified IT security consultant.

Mr. Norris started a consultancy, Norris Embedded
Software Solutions (dba NESS LLC), which specializes in
developing application solutions using microprocessors and
microcontrollers. He likes to think of himself as a perpetual
hobbyist and geek, and is always trying out new approaches
and out-of-the-box experiments. He is a licensed private pilot,
active member of the Civil Air Patrol, photography buff,
amateur radio operator, and avid runner.

Mr. Norris is also the author of the TAB McGraw-Hill book
Raspberry Pi Projects for the Evil Genius.

This page intentionally left blank

Contents

Preface . xv

 1 Introduction to Quadcopters . 1
A Brief History of Multirotor Helicopters . 1
A Matter of Definition . 4

How Are Quadcopters Used? . 4
Design of the Elev-8 Quadcopter . 6

Main Electrical/Electronic Elev-8 Components 7
Summary . 12

 2 Quadcopter Flight Dynamics . 13
Flight Basics . 13

Flight Axes . 14
Basic Quadcopter Configurations . 15
Flight Controls . 18

Quadcopter Controls . 19
PID Control . 24
PID Theory . 26
Tuning . 27
LabVIEW PID Simulation . 28

Summary . 32

 3 Building the Elev-8 . 33
Introduction . 33
Safety . 33
Tools and Additional Materials . 34

Bill of Material . 35
Additional Materials . 37
Optional Additional Materials . 40

Beginning the Build . 44
Motor Set Screws . 44
Solder the Motor and ESC Connectors . 44
Motor Mount Assembly . 47
Boom Accessories . 49
Attach Motor/Boom Assemblies

to the Bottom Chassis Plate . 50
Solder the Power Harness Together . 51
Installing the Quad Power-Distribution Board 53

ix

 x C o n t e n t s

Configure Your Transmitter . 54
Programming the Electronic Speed Controllers 56

Connect the Motors and Synchronize the ESCs 57
Chassis Top-Plate and Control-Board Assemblies 59
Mount the Control-Board Assembly

onto the Chassis . 62
Control-Board Connections . 63
Mounting the Propeller Blades . 64
Mounting the Battery . 65

A Few More Comments . 67

 4 Programming the Parallax Propeller Chip . 69
Introduction . 69
Prop Architecture . 69
Prop Software . 73

Spin Language . 73
Propeller Spin Tool . 73
Porting to the Propeller QuickStart Board . 80
Clock Timing . 82

RC Oscillator Operations . 82
Crystal Oscillator Operations . 84
Reducing Dependence on Absolute

Clock-Cycle Times . 84
Pulse-Width Modulation and Servo Example . 88
Summary . 94

 5 Quadcopter Propulsors . 95
Introduction . 95
Motors . 95
Electronic Speed Controller . 100

ESC Waveforms . 104
Propeller, Motor, and ESC Experiment . 105

Running the Experiment . 108
Experimental Results . 110

Battery Eliminator Circuit . 113
Propellers . 114
Comprehensive Quadcopter Analysis . 116

ESC_Motor_Control_Demo Analysis . 117
A Brief Introduction to the C Language . 125
Summary . 127

 6 Radio-Controlled Systems and Telemetry . 129
Introduction . 129
Evolution of Model R/C Systems . 129
Carriers and Modulation . 129

Noise . 131

 C o n t e n t s xi

Direct-Sequence Spread Spectrum . 133
Automatic Selection of Dual Transmit Channels 135
Switching Channels for Every

Data Frame Transmitted . 135
Transmission of SOP and PN Packets . 135
Transmission of Two Sets of Cyclic

Redundancy Checks . 135
Transmission of the GUID . 136

Frequency-Hopping Spread Spectrum . 136
Binding or Pairing . 137

Experimental R/C System Demonstration . 139
Measuring R/C Channel Pulse Width and

Rate with the BOE . 145
BOE Pulse-Width Measurements . 146
BOE Pulse-Rate Measurements . 150

Telemetry . 155
Summary . 159

 7 Servo Motors and Extending the Servo Control System 161
Introduction . 161
Exploring a Standard R/C Analog Servo Motor 161
The Digital Servo . 166
Continuous Rotation Servos . 168
R/C Signal Display System . 170
Elev-8 LED-Lighting Controller . 179
Tilting Mechanism for a First-Person Viewer . 188
Summary . 192

 8 GPS and a Real-Time Situational Display . 193
Introduction . 193
GPS Basics . 193

Brief GPS history . 193
How GPS Functions . 194

Quadcopter GPS Receiver . 198
GPS Receiver UART Communications . 199
Initial GPS Receiver Test . 200

NMEA Protocol . 202
Latitude and Longitude Formats . 203
Parsed GPS Message . 204

Propeller Mini . 204
Radio-Frequency Transceiver Module . 205
XBee Hardware . 207
XBee Data Protocol . 209
XBee Functional Test . 212

XBee Range Check . 216

 xii C o n t e n t s

Complete GPS Systems . 216
Portable Display . 222
Mounting the Transmitter XBee Node . 225

Moving Map System . 227
Monitoring the Quadcopter Position with

the Google Earth Application . 227
Summary . 230

 9 Airborne Video Systems . 233
Introduction . 233
GoPro Hero 3 Camera System . 233

Hero 3 WiFi-Range Test . 241
Ground Station . 243
Economy Video System . 244
Post-Processing Software . 248

RoboRealm . 248
Field Test of the RC310 System with Post Processing 256

Higher Resolution Test Image . 257
Geotagging GoPro Hero 3 Photos . 260

Geotag Test Run . 261
Summary . 268

 10 Training Tutorial and Performance Checks . 269
Introduction . 269
Developing Fundamental Quadcopter Piloting Skills 269
The Trainer Cable . 274
Running the SIM . 275
The Buddy Box . 277
Wireless SimStick Pro . 278
Performance Measurements . 279

Determining Maximum Payload . 279
Test Results . 283

Kill Switch . 284
Estimating Flight Time . 285
Summary . 286

 11 Enhancements and Future Projects . 289
Introduction . 289
Position Location and Return to Home Operation 289

Electronic Compass Module . 290
Computing Path Length and Bearing Using

Latitude and Longitude Coordinates . 297
Computing Longitudinal Length . 299
Computing Bearing . 301

Return-to-Home Flight Scenario . 303
Swarm or Formation Flying . 304

 C o n t e n t s xiii

Motion Capture . 305
Close-Proximity Detection . 305
Near-to-Ground Altitude Measurements 311
Ultrasonic Sensor Concerns . 311
Maneuvering the Quadcopter to Maintain

Its Formation Position . 312
Other Close-Proximity Sensors . 313

Writing to the EHO-1A LCD Screen . 319
Communicating with Peripheral Modules 320

Autonomous Behavior . 320
Artificial Intelligence . 321

Some Basic FL Concepts . 321
Quadcopter FLC Applications . 323

Matlab® . 324
ViewPort™ Fuzzy Logic Functions . 327

Summary . 328

 Index . 331

This page intentionally left blank

Preface

It was a bit of a surprise to me when my editor, Roger Stewart, asked me if I was interested
in writing a book about building and flying quadcopters. It seems Roger had been
interested in having a book written about this hot topic for some time. I remember

mentioning to him that I had recently built a good-sized quadcopter, just because it was a
fun thing to do, and I was quite interested in the technology that permitted these aircraft to
not only fly but also be manually controlled precisely, or even be set to fly autonomously. I
accepted his offer, and the book you now have in your hands or are viewing on an electronic
device is the result of that chance discussion.

I must admit I am somewhat of a multirotor geek hobbyist, having two Parallax Elev-8
units, one octocopter and one micro-sized quadcopter. I must also warn you that this hobby
is addictive and you will soon see yourself surrounded by quadcopters and, more likely,
pieces and parts of quadcopters, which is just part of the price you pay to enjoy this hobby.
But have no fear, it is perfectly possible to minimize damage yet thoroughly enjoy flying
your quadcopter for many, many enjoyable hours.

I would like now to give you my high-level view (pun intended) of this book and what
I hope you will gain from reading it. First, and most likely foremost, in the minds of readers
is that you will be able to successfully build the Parallax Corporation’s Elev-8 quadcopter
kit by following the instructions in this book, which are detailed in Chapter 3. I will honestly
say that these instructions are mainly from the Parallax assembly instructions with plenty
of additional information that I have provided to clarify and amplify the company-provided
instructions. Having said that, I will emphasis that this book is a lot more than a “missing
manual”–type book. As an educator, I feel somewhat responsible that my readers get not
only what is needed to build a quadcopter but also a lot more in terms of an education
about all the technologies that make up today’s sophisticated quadcopters. With that in
mind, I will explain all the principal components that constitute a modern quadcopter
in sufficient detail so that you should feel comfortable deciding which components you can
or should modify to suit your own needs and desires. I would also like to mention that the
quadcopter that is being discussed in this book would likely be classified as professional
or semiprofessional in nature so as to be distinguished from the flood of very cheap
manufactured “toy” quadcopters. I am not being derisive toward the toys, as they have
their place, but it is totally wrong to lump the two types together, as you will see as you
progress through this book. Now, I will gently step down from my “soapbox” and proceed
to tell you what to expect in this book.

The first chapter starts with a history of the quadcopter or, as it was known in historical
times, a multirotor aircraft. Back in the 1920s, there was no concept of unmanned aircraft;
therefore, all the experimental multirotors were large-scale units, fully capable of carrying
one person airborne. How those flights turned out are other stories you will find in the
chapter. I then progress rapidly through the twentieth century to the 1990s, where rapid
progress, mainly in terms of semiconductor and battery technologies, makes the modern
quadcopter a real possibility.

xv

 xvi P r e f a c e

Truly understanding how a quadcopter flies was my reason for including Chapter 2,
which covers basic flight aerodynamics. Make no mistake; quadcopters are governed by the
same flight principles that apply from the Wright brothers’ “Flyer” to the ultramodern F-35
Joint Strike Fighter (JSF). As a real pilot, I thought it was important that readers understand
how the quadcopter can be made to fly and what aerodynamic forces are constantly in play
while it is flying. Along the way, I threw in a “little” math in terms of proportional-integral-
derivative (PID) theory to provide a basis for understanding the control protocol or algorithms
that are needed to keep the quadcopter in a steady flight pattern.

Chapter 3 contains all the build instructions for assembling and configuring the Parallax
Corporation’s Elev-8 quadcopter kit. Go no further than this chapter if you simply want to
read an expanded set of assembly instructions. However, I expect my readers to be far more
interested in what makes up the quadcopter system and will read on. I promise you that you
will not be disappointed.

The Propeller chip supplied by Parallax is the heart of the quadcopter flight-control
board. Chapter 4 explores what constitutes this fantastic technology and how you can learn
to program this chip to perform the experimental functions you can invent and desire to test.
I also introduce and explain the concept of pulse-width modulation (PWM), which is an
integral technology needed to control the quadcopter.

Chapter 5 covers all the propulsor components that make up larger-scale quadcopters,
including the motors, electronic speed controllers (ESCs) and the propellers. All of these are
essential parts of the quadcopter’s propulsion system, and it is very important that you
understand what limitations and constraints apply to each of them. “Overtaxing” your
motors will cause the quadcopter to fail, and probably at the worst time possible.

The next chapter covers radio-controlled (R/C) systems. Don’t worry, you will not be
required to build your own; however, I do want you to understand why certain R/C systems
are so much better than others that are normally much less expensive. I make the case that it
is a wise investment to acquire a high-quality R/C system to ensure that you maintain
positive control over your quadcopter at all times. There are many inexpensive systems
available, and while they may be satisfactory for toy systems, they really are not suitable for
a relatively expensive and larger-scale quadcopter like the Elev-8. I also show you how to
program a Parallax development board to measure certain key signals that transmit from
your R/C system.

Chapter 7 covers R/C grade servos, which is a bit odd, as the basic Elev-8 kit does not
contain any servos. I included this servo chapter to ensure that you are well acquainted with
this technology, as these devices are used extensively in “regular” R/C aircraft and also in a
modification to the Elev-8 for controlling the tilt of an onboard video camera. I also show
how to build an LED-flasher circuit that takes advantage of a spare servo channel that is
available on the quality R/C transmitter.

GPS is covered in Chapter 8, in which I start with what I hope is a good, but brief,
tutorial on how GPS functions and how it could be used in conjunction with quadcopter
operations. I also show you how to build a real-time GPS data-reporting system, using XBee
technology to transmit data from the quadcopter to a ground control station (GCS).
Theoretically, you could control the quadcopter using the transmitted GPS coordinates well
beyond the R/C operator’s line-of-sight (LOS); however, I strongly do not recommend this
mode of operation.

I discuss airborne video systems in Chapter 9, as that is truly a hot-topic item with
regard to quadcopters. Two types of video systems are shown, one which provides high-
quality, wide-angle views, and another which is much lower quality but still more than
adequate to be used with video-processing software, which is also discussed in the chapter.
Although not mentioned in the chapter, I do want to acknowledge that I have been involved

 P r e f a c e xvii

with an experimental quadcopter video surveillance system deployed on or about my
college campus. I also want to acknowledge the help and support of Dr. Lundy Lewis in this
project, which was designed to promote a campus-wide, reasoned discussion of both the
advantages and disadvantages of deploying such a system.

Training is the chief topic in Chapter 10. Learning how to safely control a quadcopter is
a necessity; it definitely requires patience and repeated use of some type of simulator before
you acquire the skills to safely fly the Elev-8. This is another area that differentiates the toy
class from the professional-grade quadcopter. Most people can learn to control the toy
versions by trial and error without incurring much damage to the toy or endangering other
people or property. That’s not true with the Elev-8; you should practice and hone your skills
before attempting to fly it, especially in congested areas.

The final chapter deals with further enhancements to the Elev-8 and suggestions for
future projects that might interest readers, such as autonomous flight and applying artificial
intelligence (AI) to quadcopter operations. I discuss an electronic compass sensor, which is an
important add-on, especially if autonomous operations are being considered. A brief
introduction to Fuzzy Logic (FL) is also presented in the chapter, as it is the most appropriate
control approach needed to implement quadcopter AI. I would also like to acknowledge the
support of Dr. Robert Seidman, who taught me so much about AI and how to properly apply
it to control scenarios, which is so applicable in this situation.

I hope the book only opens your desire to participate in building and flying a quadcopter.
Quadcoptera are much more than a simple hobby, as you probably realize from reading
current articles and seeing TV news segments. The overall “drone” market is expected to
grow into the multibillion range in the very near future, and, hopefully, this book will help
you prepare to participate in this rapidly changing, but highly interesting, endeavor/hobby.

Good luck with your quadcopter.

Donald Norris

This page intentionally left blank

Build Your Own
Quadcopter

This page intentionally left blank

chapter 1
Introduction to

Quadcopters

A Brief History of Multirotor Helicopters
The multirotor helicopter also known as a quadrotor or quadcopter is equipped with four
rotors to create lift. It is a true helicopter in that lift force is created by narrow-chord
horizontally rotating air foils. The quadcopter design has been in existence since the 1920s
when an early manned version named the De Bothezat helicopter was built and successfully
flown. First developed and prototyped under a U.S. Army contract, the De Bothezat helicopter
is pictured in Figure 1.1.

It first flew in October 1922 at what is now known as Wright Field in Dayton, Ohio.
The helicopter actually started with six rotors, but eventually two were deemed
unnecessary and were eliminated. It made more than 100 flights over a period of years but
never flew more than 5 meters into the air and never with any lateral movement. This was
due to the complexity and difficulty of simply trying to maintain level flight, never mind
moving in a lateral direction. This lateral movement control was to be the bane of multirotor
helicopters until the invention and use of computer-assisted flight-control systems that
would lessen the pilot workload. The U.S. Army eventually lost interest in the De Bothezat
project and discontinued it in the early 1930s, after spending more than $200,000 on
the program.

Helicopter development languished, at least in the United States, from the early 1930s to
the mid 1940s. With the ending of World War II, development work did resume, but the
focus was on more conventional designs that employed a main rotor with a tail rotor or the
use of coaxial main rotors. The armed forces that initially funded helicopter development
apparently believed that any possible advantages of using quad rotors were far outweighed
by their complexity and ill-mannered flight characteristics.

The U.S. Army eventually developed and successfully fielded a heavy-lift, tandem-rotor
helicopter named the Chinook, model CH-47, which despite being designed in the 1960s, is
still in wide use today. It has undergone many updates and upgrades to keep it fully
compatible with today’s environment.

The U.S. Department of Defense also sponsored the development and production of a
hybrid, dual-tilt-rotor aircraft named the Osprey, model V-22. It takes off and lands as a dual
rotor helicopter, but flies as a traditional airplane with the wings tilted to a level position
while it is operating in cruise mode. Figure 1.2 is a picture of the pilot’s station in the V-22,
showing all the incredible technology available to the pilot.

1

 2 B u i l d Y o u r O w n Q u a d c o p t e r

Both the Chinook and Osprey take advantage of computer-assisted flight-control
systems that significantly reduce pilot workload and make it practical to safely fly aircraft
that would otherwise be nearly impossible to fly.

The development of true quad-rotor helicopters turned out to be delayed until the early
1990s when a small-scale, radio-controlled (R/C) system named the Gyro Saucer 1 was
developed and marketed in Japan. This is the earliest instance that I could find in my
research for the appearance of a practical quadcopter, with or without an onboard pilot. It
used mechanical gyros for stability and fairly small electrical motors to turn the props.
Unfortunately, the props were made of Styrofoam and had a habit of disintegrating if they
came in contact with anything, including light fabric curtains. The Gyro Saucer had an
operating flight time of approximately three minutes, was never exported from Japan, and
hence, was a relatively unknown system. Figure 1.3 is a picture of this early quadcopter.

The first modern, widely available multirotor system was the Draganflyer, which was
designed and manufactured in the early 2000s by Draganfly Innovations Inc. Draganfly has

Figure 1.1 De Bothezat helicopter.

Figure 1.2 V-22 pilot’s station.

 C h a p t e r 1 : I n t r o d u c t i o n t o Q u a d c o p t e r s 3

since superseded that early design with later models that are much more sophisticated and
come equipped with a variety of functional capabilities. Figure 1.4 is a picture of their X-8
model, which is quite a remarkable and stable platform.

The X-8 quadcopter has four booms with a motor attached to each one and a pair of
propellers attached to each motor, thus making for a total of eight propellers on the craft.
This quadcopter is just one of dozens of models available for purchase at the time this book
is being written.

Most small-scale, R/C multirotor helicopters have four rotors; however, there are models
with as few as three to as many as eight, with a few outliers with even more. There is also a
start-up company named e-volo that plans to build a manned aircraft with 18 rotors named
the Volocopter.

This book will focus only on building and flying an R/C small-scale quadcopter because
it is the most representative and reasonably priced of the current selection of multirotor
helicopters.

Figure 1.3 Gyro Saucer 1 system.

Figure 1.4 Draganflyer X-8.

 4 B u i l d Y o u r O w n Q u a d c o p t e r

A Matter of Definition
There are a variety of descriptors associated with quadcopters that I would like to briefly
examine. Probably the most general description of a quadcopter is an unmanned aerial vehicle
(UAV). UAV has also been interpreted as an uninhabited aerial vehicle, which is precisely the
same meaning as unmanned aerial vehicle. Two descriptions that are more specific would
be those of remotely operated aircraft (ROA) and remotely piloted vehicle (RPV). The last two
descriptions mean that no pilot is physically carried by the aerial vehicle and all vehicle
control is accomplished either by a pilot using a remote ground station or autonomously by
the vehicle. A related definition for this type of operation is autonomous aerial vehicle (AAV).
It is often used to describe a UAV that is controlling its own operation, independent of any
ground station. However, it should be pointed out that all AAVs should have some kind of
autonomous override command available from a ground station, just in case something goes
wrong with the onboard flight-control system. Having a fail-safe mode should always be a
paramount design decision in any AAV project.

UAV, ROA, and RPV are the most popular and well-known descriptions for the quadcopter
type of vehicle. There is also one other popular descriptor: micro aerial vehicle (MAV), which
refers to any very small-sized UAV with all length, width, or height dimensions of 15 cm or
less. MAVs are actively being developed along with swarming control techniques in a variety
of research projects. Developers of some of these projects hope to implement insect biomimicry
into their MAVs in an attempt to achieve the performance and capabilities of their real-world
counterparts.

How Are Quadcopters Used?
The answer to the question of how quadcopters are used depends on whether one is viewing
them from a military or a civilian perspective. Military use of quadcopters lies mainly in the
intelligence, surveillance, and reconnaissance (ISR) field, and to a lesser extent, in tactical
deployments. Quadcopters are excellent ISR assets that nicely complement fixed-wing UAVs
that are extensively employed by many worldwide military organizations. Currently all
tactical deployments where weapons-carrying UAVs are deployed in actual combat are still
the domain of fixed wing UAVs, such as the U.S. Air Force MQ-9 Reaper, which is shown in
Figure 1.5.

The quadcopter, as of this writing, still cannot carry a heavy payload, such as a missile
or cannon, although it is likely that there are ongoing military research projects attempting
to overcome this limitation. There would be an obvious tactical advantage for a combat
unit to be able to deploy a small, airborne weapons platform that could hover over a
battlefield and engage enemy targets upon command. The old military adage of “gain the
high ground for tactical advantage” would definitely take on a new meaning with the use of
a tactical quadcopter.

Civilian uses for quadcopters are far more numerous than military ones at this time.
Some of these are listed in Table 1.1.

There are some legal restrictions in the United States regarding the civilian use of
quadcopter UAVs, including the FAA requirements that they not be flown any more than
400 feet above ground level and not near any airport. I am sure that similar restrictions are
in place in other countries, so I would urge you to research the laws and regulations that
are applicable in your country.

U.S. residents should also be aware that the airspace above their domiciles is not
exclusive for their use. In the 1946 decision, United States v. Causby 328 US 256 1946, the U.S.
Supreme Court held that only the landowner’s airspace that may be reasonably occupied or

 C h a p t e r 1 : I n t r o d u c t i o n t o Q u a d c o p t e r s 5

used in connection with the land residence is exclusive to the landowner. The precise court
wording is shown below:

Cujus est solum ejus est usque ad coelum et ad inferos has no legal authority in the United
States when pertaining to the sky. A man does not have control and ownership over the airspace
of their property except within reasonable limits to utilize their property. Airspace above a set
minimum height is property of the Masses and no one man can accuse airplanes or other such
craft of trespassing on what they own.

Figure 1.5 US Air Force MQ-9 Reaper UAV.

Law enforcement

Security patrols on private property

Agricultural surveying

Communications relay

Incident command support

Aerial mapping

Aerial photography

Severe weather telemetry

University research projects

Search and rescue

Table 1.1 Civilian Uses of Quadcopters

 6 B u i l d Y o u r O w n Q u a d c o p t e r

The Latin words at the start of the court’s decision refer to English common law where
it was held that a landowner had exclusive rights to all space “from the depths to the
heavens.” Obviously, the court held that this specificity did not apply in the United States.
Otherwise, one could imagine the resulting chaos if airlines had to obtain landowners
permission to fly into airspace that projected from the ground. As mentioned earlier, it
would be wise to check with the appropriate authorities before flying your quadcopter in a
country other than the United States. You might find yourself inadvertently trespassing in
someone’s airspace.

Other limitations or constraints related to real-time video surveillance are more
problematic. All quadcopters with video capability, whether onboard capture or real-time
transmission, should be operated with prudence. In other words, it is definitely not a good
idea to fly the quadcopter (even without video) over to your neighbor’s house and attempt
to peer in their windows. Flying over your neighbors' houses, while legal, should be done
with an abundance of caution. I would definitely talk with my neighbors prior to making
any flights above or close to their homes.

Design of the Elev-8 Quadcopter
According to Ken Gracey, President of Parallax Inc., the Elev-8 project began after a visit
to his company by some folks from the Hoverfly Company. Hoverfly manufactures
sophisticated quad and hex copters that can optionally be equipped with camera systems.
Hoverfly also designs and manufactures flight-control boards, which was one of the main
reasons they visited Parallax. It turns out that some very bright Parallax engineers designed
an unusual and very clever eight-core microcontroller they aptly named Propeller. The
designers decided to call their cores “cogs,” which I suppose was to emphasize a more
collaborative computing approach as compared to traditional multicore processors. (In a
later chapter, I will explore the Propeller chip in much greater depth.) Designers and
engineers at Hoverfly recognized the unique capabilities of the Propeller chip and decided
to incorporate it into their flight-controller boards. Thus, the reason for the visit to Parallax
headquarters was to demonstrate their quadcopter. Ken was fascinated with their
demonstration and quickly realized that he and his company had to be involved in a like-
minded project, which is the genesis of the Elev-8. Ken also realized that it made much
more sense to provide a kit of parts in lieu of a fully assembled quadcopter. This idea
fit with the Parallax company specialty, which is centered on providing builders and users
with components and subassemblies in lieu of fully assembled products. At times, they
have provided fully assembled products, but that seems mostly outside of their modus
operandi.

Creating the basic Elev-8 kit was in itself a bit of a problem: Ken and two of his engineers,
Kevin Cook and Nick Ernst, had to determine suitable components that would enable
builders to successfully make their own Elev-8 without excessive costs or complexity. Many
of the problems and design decisions they encountered will be discussed in later chapters to
provide you with an understanding of the decisions that are required in a project of this
complexity.

It was an easy decision for Ken to simply incorporate a fully assembled HoverflySPORT
controller board into the kit. The flight-controller board is the key element that enables a user
with an R/C transmitter to fly a quadcopter as directed. Figure 1.6 shows the HoverflySPORT
controller board.

Chapter 2 delves into the complexities of quadcopter flight dynamics, and it soon will
become apparent that designing and building a flight-control board is best left to professionals.

 C h a p t e r 1 : I n t r o d u c t i o n t o Q u a d c o p t e r s 7

Having said that, it turns out that current Elev-8 kits now contain the HoverflyOPEN
controller board, which gives knowledgeable users the opportunity to add their own control
programs in lieu of using the default software. Figure 1.7 shows the HoverflyOPEN board In
Chapter 2, I will also address the pros and cons of creating your own flight-control software.

Main Electrical/Electronic Elev-8 Components
The main electrical/electronic components that make up the Elev-8 system are shown in
Figure 1.8. There are only 11 essential components, not counting wires, connectors, or any
optional components such as telemetry and LED display components.

With only 11 components, the Elev-8 is not a very complex aircraft due mainly to the
automated control provided by the HoverflyOPEN control board. A fully assembled, basic
Elev-8 is shown in Figure 1.9.

The HoverflyOPEN control board and a Spektrum AR8000 receiver are clearly visible
mounted on the top of the quadcopter. The LiPo battery is disconnected, as shown by the
unconnected power cables that are visible in the front of the quadcopter. Red checkerboard
pattern decals have been applied on each of the two aluminum tubes attached to the right
side of the quadcopter. In addition, black checkerboard pattern decals are on the tubes

Figure 1.6 HoverflySPORT controller board.

 8 B u i l d Y o u r O w n Q u a d c o p t e r

attached on the left. The red decals serve a very important purpose: they show the forward
travel direction for an X configuration quadcopter. Forward is always between the red
checkered tubes. The X configuration as well as other configurations will be discussed in
Chapter 2.

Figure 1.10 is a picture of the first Elev-8 that I built in early 2012.
Every Elev-8 built will be unique to some degree. They all start from a basic kit of parts

available for purchase from Parallax Inc., Rocklin, CA. Users can, and probably should,
modify their kits to suit their personal preferences. Modifications can include adding items
such as LED lights, video cameras, GPS trackers, and so on. For example, I added a separate
Basic Stamp II microcontroller on my first quadcopter, which allowed me to independently
program the display operation of the four LED strips attached to the underside of each of the
four boom tubes. Figure 1.11 is a picture of a Basic Stamp II development board mounted

Figure 1.7 HoverflyOPEN controller board.

 C h a p t e r 1 : I n t r o d u c t i o n t o Q u a d c o p t e r s 9

Figure 1.8 Main electrical/electronic Elev-8 components.

Figure 1.9 Basic Elev-8 quadcopter.

 10 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 1.10 My first Elev-8 quadcopter.

Figure 1.11 LED control Basic Stamp II development board.

 C h a p t e r 1 : I n t r o d u c t i o n t o Q u a d c o p t e r s 11

between the two Delrin boards that comprise the main structural boards of the Elev-8. The
LED power distribution prototype board is located beneath a small cardboard piece with
Elev-8 printed on it.

The DB-9 connector visible in the photo is used only to program the Stamp chip and is
not needed during normal operation.

One of the LED strips mounted on the bottom of a boom tube is shown in Figure 1.12.
Each strip has six LEDs mounted on an integral plastic backing strip that needs only two
wires to power and control it.

I also added an R/C servo-control kill switch that was the ultimate fail-safe feature,
just in case the quadcopter went out of control. This servo-control switch is shown in
Figure 1.13.

Remotely activating this switch immediately cuts off all power to the quadcopter and
causes it to drop to the ground. Remember, it is always preferable, and a lot less expensive,
to accept damage to the quadcopter than to cause personal injury and/or property damage to
an innocent party.

Figure 1.12 LED strip.

Figure 1.13 Servo-control kill switch.

 12 B u i l d Y o u r O w n Q u a d c o p t e r

Summary
I began this chapter with a brief history of multirotor development that started in the 1920s
with a large manned aircraft, the De Bothezat helicopter. It turned out that safely controlling
the flight path for this type of aircraft was much too demanding for human pilots. This fact
delayed development until computer technologies were created that enabled the requisite
supplemental control for safe flight. Two significant paths of development then led to more
advances: (1) amply funded military projects in the 1970s yielded the design and production
of manned multirotor aircraft, and (2) small unmanned R/C multirotors were built in Japan
in the 1990s.

Next, I discussed a variety of definitions to help clarify the confusion that seems to
surround these aircraft. The term unmanned aerial vehicle (UAV) appears to be the most
appropriate descriptor for the quadcopter.

The section on military and civilian uses of quadcopters revealed that there are far more
civilian applications than military ones. I also discussed some legalities that you should be
aware of and obey as required.

The Elev-8 quadcopter kit origins began when the Hoverfly Company used the Parallax
Propeller chip in the design of their flight controllers. The president of Parallax decided to
create a parts kit, including a Hoverfly control board that would enable users to build their
own highly capable quadcopter at a reasonable cost. Remarkably, there are only 11 main
electrical/electronic components that make up the basic Elev-8.

I finished the chapter by showing some of the add-ons and enhancements that can be
incorporated into the basic Elev-8. A real-time video add-on will also be discussed in detail
in a later chapter.

Chapter 2 provides a thorough discussion of the quadcopter flight dynamics. I strongly
urge you to carefully study the next chapter in order to achieve a good understanding of the
physics that allows a quadcopter to fly. This knowledge will improve your control skills.
Additionally, a good understanding of the basics of quadcopter control will also help you to
create your own software, if you are so inclined.

chapter 2
Quadcopter

Flight Dynamics

Flight Basics
I will begin this chapter with an introduction to basic flight principles that are applicable to
any aircraft with wings. It is important for you to have this knowledge in order to understand
how a quadcopter flies and the differences between its flight characteristics and those of a
normal aircraft.

Figure 2.1, which is from NASA, shows an iconic Wright 1903 Flyer with all four
aerodynamic flight forces that simultaneously and continually act upon it. The four forces
shown in the figure are further described in Table 2.1.

These forces are universally applicable to all aircraft—from the Wright Flyer to the
modern F-35 Joint Strike Fighter (JSF). How an aircraft responds to these forces determines
whether it is climbing, diving, in level flight, or turning.

The quadcopter design is different from that of regular aircraft in that it has no wings,
and thus, cannot generate any lift force. Instead, it depends solely on thrust forces created by
the motors attached at the end of each of its booms. Additionally, the upward and forward
velocities traveled by a quadcopter are small enough that drag forces are not really a factor.
As a consequence, there are only two principal forces affecting the quadcopter: thrust and
weight. Now weight is a fixed force that can be changed only by design or by altering the
payload. This leaves only thrust as the sole control force for a quadcopter. However, thrust
is nearly directly proportional to the rotational speed of the motors, which means that
controlling the motor speed totally controls the flight path of the quadcopter. When the
rotational speeds are all equal and sufficiently fast, then the quadcopter will rise straight
up into the air. A vertical flight path was essentially the only flight path available to the early
De Bothezat helicopter discussed in Chapter 1. Varying the rotational speeds of one or more
of the quadcopter motors is the only way to alter the quadcopter’s flight path. Altering the
quadcopter flight path would be a most daunting proposition for a human pilot who would
have to rely on his or her sense of balance and then somehow translate that sensation to
actual motor speed changes. It is easy to understand why manned multirotors remained an
unachievable goal until the advent of automated flight-control techniques.

Also important to quadcopter flight dynamics are “two additional flight principles
of balance and center of gravity (CG), which are directly related to weight, one of the
fundamental flight forces. Weight must be properly distributed in order for any aircraft to fly
safely. Determining safe weight distribution starts with the basic aircraft design and uses a

13

 14 B u i l d Y o u r O w n Q u a d c o p t e r

center-of-gravity concept. CG can be thought of as an imaginary point within an aircraft
where it could be suspended in a perfectly balanced position. In the real world, a CG point
is used to determine if an aircraft is stable; if the entire payload including the airframe, fuel,
passengers, and cargo is within prescribed design limits; and consequently, if the aircraft is
safe to fly. A quadcopter CG may be thought of as the point within the copter where a string
could be attached to suspend it in a perfectly balanced state. Naturally, one would expect the
CG to be collocated with the physical center of the quadcopter. If the CG is located off center,
it would tend to make the quadcopter unstable, perhaps to the point of being uncontrollable
if it were located too far from the physical center. This is always something to consider when
attaching devices to the quadcopter. For instance, attaching a camera module close to the
outboard side of a motor boom, which might make sense for a better field of view, would
probably upset the CG to the detriment of the quadcopter flight stability.

Flight Axes
In order to fully understand airplane flight dynamics, it is necessary to discuss three physical
axes and the three rotations associated with those axes. Figure 2.2 shows a light general-
aviation (GA) airplane with its longitudinal axis running fore and aft through the fuselage.
The lateral axis is perpendicular and in the same plane as the longitudinal axis and runs
through the wing, intersecting with the longitudinal axis at the CG. The third axis, called the
vertical axis, is perpendicular to the other two and also goes through the CG. The three

Figure 2.1 Wright 1903 Flyer shown with flight forces. (Courtesy of NASA)

Force Description

Weight The downward force acting upon the aircraft due to Earth’s gravity.

Lift The upward force created by the rapid passage of air over and under the airfoil
(wing).

Thrust The forward force created by the rotating propeller pushing air backward.

Drag The backward force created by wind resistance due to the fuselage shape and
non-streamlined appendages.

Table 2.1 Four Aerodynamic Flight Forces

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 15

rotational motions associated with each of these axes are also shown in Figure 2.2 and are
described in Table 2.2.

Actual flight path turns are a combination of coordinated roll and yaw rotations that
result from pilot initiated motion of both the aileron- (the hinged surface at the edge of an
airplane wing) and rudder-control surfaces. Figure 2.3 shows the three rotational motions
and the corresponding axes as they apply to a quadcopter. The quadcopter diagrammed in
the figure is in an X configuration, which is discussed in the next section. However, it makes
no difference how a quadcopter is configured; the pitch, roll, and yaw rotational motions
will always be the same for each axis.

Basic Quadcopter Configurations
The basic quadcopter is simply a center platform from which booms are extended. Motors
with propellers are attached at the end of each boom. A variety of configurations exist based
upon this basic form. Some of the most common are shown in Figure 2.4.

The configuration shown at the top left of the figure is the plus configuration, while the
top center is the X configuration. The X configuration is the type used in the Elev-8. The only
difference between the plus and X configurations is the forward direction designation. The
forward direction is always aligned with a boom for the plus, while it is centered between
two booms for the X configuration. It is imperative that the actual quadcopter configuration
be input into the flight-control board, or else it will not be able to properly control the copter.

Name Axis Description

Pitch Lateral Rotation around the lateral axis that results in a climb or
descent

Roll Longitudinal Rotation around the longitudinal axis that results in straight line
roll but no turn to either side

Yaw Vertical Rotation around the vertical axis that results in a turn to the left
or right

Table 2.2 Aerodynamic Rotational Motions

Figure 2.2 Airplane principal axes and axial rotation motions.

 16 B u i l d Y o u r O w n Q u a d c o p t e r

In Figure 2.4, all the motor positions have the rotation designations for clockwise (CW) or
counterclockwise (CCW). I will ignore the ones with both for now. When viewed from above,
the CW and CCW rotations alternate, which ensures that there is a net zero torque on the
quadcopter, and thus, it will not yaw when all motor speeds are equal. A strong yaw rotation
would result if all the motors rotated in the same direction, because of Newton’s third law of
motion: To every action there is always an equal and opposite reaction. It is possible to start yaw
rotation by varying the speeds of the CW and CCW motors separately.

Different propellers are used on the CW and CCW motors. Figure 2.5 shows one of the
propellers that is designed to turn CCW. The propeller is part of the Elev-8 kit and is
designated as a 10 × 4.7 Slo-Flyer Pusher, model LP 10047 SFP. The 10 in the designation
refers to the propeller diameter in inches, while the 4.7 refers to the number of inches that
the propeller advances into the air per revolution. This number is also referred to as the

Figure 2.3 Quadcopter principal axes and respective rotational motions.

Figure 2.4 Basic quadcopter configurations.

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 17

propeller’s pitch, not to be confused with the aerodynamic pitch describing an airplane’s
attitude. A large propeller pitch number means it takes a large “bite” out of the air for every
rotation. Conversely, a small pitch number means smaller “bites” are taken by the propeller.
Large pitch also means more torque is required from the driving motor, which translates to
more power required for that motor. The Slo-Flyer description refers to the propeller being
designed for relatively fewer revolutions per minute (r/min) than higher speed propellers.
Slo-Flyer propellers have a top r/min limit of about 7000 r/min, while high-speed propellers
can exceed 15,000 r/min. High-speed propellers often have a small pitch because it would
be impractical to provide the power needed to drive a large-pitch propeller at such high
speeds for any useful length of operating time.

The CW-turning propeller has the designation 10 × 4.7 Slo-Flyer, model LP 10047 and is
shown in Figure 2.6. The only difference between the two propellers is the pitch angle, which

Figure 2.5 CCW Elev-8 propeller.

Figure 2.6 CW Elev-8 propeller.

 18 B u i l d Y o u r O w n Q u a d c o p t e r

is why it is critical to ensure that you mount the correct propeller on a motor whose rotation
matches the propeller's maximum r/min rating.

Sharp-eyed readers may have spotted a copter with three booms on the bottom row,
center of Figure 2.4. Naturally, this would indicate an unbalanced torque arrangement;
however, the “Y6” has a clever trick to counteract the odd number of booms. At the end of
each boom is one motor that drives two propellers, one at the top and one at the bottom. The
top propeller turns CW, while the bottom propeller turns CCW, thus cancelling the top
propeller’s torque effect. Another more complex approach is to have two motors mounted at
the end of each boom: one driving the top propeller and the other driving the bottom one.
Either approach enables a multirotor copter to have an odd number of booms if so desired.

The quadcopter configuration on the bottom left is known as an “X8” because it has two
propellers at the end of each boom. Either one motor drives both propellers, or there are
two motors, one to drive each propeller. Having twice the number of propellers increases the
available thrust substantially, but at the expense of requiring a lot more power for every
motor as compared to a regular four-bladed quadcopter.

Flight Controls
It would be useful now to describe how normal airplane flight controls function before
describing how the quadcopter flight path is controlled. The reason is simply that the radio-
controlled (R/C) system is set for controlling an airplane, not for controlling the quadcopter,
and it is important for you to know the “translation” that takes place when you input a
control command. Figure 2.7 shows the external control surfaces that can change the pitch,
roll, and yaw of an airplane based upon pilot commanded control movements.

Figure 2.8 shows the interior of a modern Cessna 172S equipped with a Garmin G1000
avionics suite, commonly referred to as a “glass” cockpit. For purposes of this discussion,
your attention should be focused on the yoke, rudder pedals, and throttle that are pointed
out in the figure. The pilot, who is normally in the left seat, changes the pitch attitude by

Figure 2.7 Airplane control surfaces.

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 19

pulling on the yoke to climb and pushing on it to descend. Throttle changes are often needed
as part of the climb or descent maneuvers. The external, elevator-control surfaces, shown in
Figure 2.7, are the ones involved with climbing and descending.

To make coordinated turns, turn the yoke left or right, and simultaneously press on the
appropriate rudder pedal that matches the turn direction. Using the rudder alone will turn
the aircraft, but it would result in an unpleasant turn in which the aircraft would either slip
or skid throughout the turn. The external, aileron- and rudder-control surfaces, shown in
Figure 2.7, are the ones involved with turning. Turning only the yoke will roll the airplane
around the longitudinal axis without changing its direction of travel. The ailerons are used
solely as the external control surfaces.

Quadcopter Controls
Now that the basic airplane controls have been discussed, we can begin the discussion of the
quadcopter controls. The quadcopter is controlled as if it were a normal R/C guided airplane.
The difference in control happens when the quadcopter’s flight-control board intercepts the
normal flight-control commands and translates them into appropriate motor speed control
signals. That is all that can be controlled on a quadcopter, which lacks the wings, ailerons,
rudder, and flaps found on a normal aircraft. Figure 2.9, taken from the Spektrum DX-8
user’s manual, shows the transmitter I used to control the Elev-8.

The stick on the left controls both the throttle and the rudder, while the stick on the right
controls the ailerons and the elevator. Pushing the left stick forward and back increases or
decreases the motor speed to all motors, respectively. Increasing all motor speeds
simultaneously will send the quadcopter into a vertical flight path that is equivalent to a
climb in a normal aircraft. Obviously, an equal simultaneous reduction in power causes it to
descend. A somewhat more interesting control action happens when the right stick is moved
left or right, a movement that ordinarily controls the elevator of a normal airplane. Changing

Figure 2.8 Cessna 172S cockpit.

Rudder
Pedals

Throttle

Yoke

 20 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 2.9 Spektrum DX-8 R/C transmitter.

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 21

the elevator changes the pitch attitude in a normal aircraft. The quadcopter change in pitch
happens by altering the speed of both motors forward of the CG. Reducing the speed should
pitch the quadcopter forward, and it will proceed in a forward direction. However, it is not
simply a matter of changing motor speeds because the altitude at which the quadcopter is
operating should not change as a result of the pitch command. All the motor speeds must
change, both to maintain altitude and to effect a pitch rotation. The following set of equations
should help to clarify all of the quadcopter operations. Figure 2.10, which is a modified
version of Figure 2.3, shows all the motors with matching equation and rotation identifiers.

MP1 = Motor speed for the left front motor

MP2 = Motor speed for the right front motor

MP3 = Motor speed for the left rear motor

MP4 = Motor speed for the right rear motor

T = Throttle setting

Straight up or down vertical flight:

MP1 = MP2 = MP3 = MP4 = T

Pitch change in a hover state:

The motor speeds for MP1 and MP2 must be changed in order to pitch the
quadcopter about the lateral axis. However, only changing these two motor
speeds will upset the altitude that is established. Therefore, the flight-control
board computes an offset speed that it subtracts from both forward motors, while
it adds the same offset to both rear motors, thus allowing for a pitch change
but not changing the overall throttle setting. This ensures that the quadcopter
does not change altitude.

Figure 2.10 Quadcopter diagram with motor identifiers.

 22 B u i l d Y o u r O w n Q u a d c o p t e r

MP1 = T - offset
MP2 = T - offset

MP3 = T + offset

MP4 = T + offset

You should also realize that you could increase the throttle while maintaining a
pitch change, which would result in putting the quadcopter into a normal ascent
versus a straight vertical climb.

Yaw change in a hover state:

Placing the quadcopter in a yaw without changing altitude is similar to a pitch
change except that the lower speed changes are applied to motors controlling the
desired opposite yaw direction. This means that a desired CCW yaw would have
an offset subtracted from both CW motors and the same offset added to both
CCW motors in order to maintain altitude.

MP1 = T + offset

MP2 = T - offset

MP3 = T - offset

MP4 = T + offset

Roll change in a hover state:

Rolling the quadcopter is a matter of increasing the speed of both motors on the
side opposite to the desired roll direction and simultaneously decreasing the speed
of both motors on the other side. Below are the equations for a roll to the left.

MP1 = T + offset

MP2 = T - offset

MP3 = T + offset

MP4 = T - offset

The preceding set of equations is very straightforward and is representative of the
algorithms that the flight-control board implements. However, the quadcopter flight control
is not quite that simple. Automated control of a quadcopter aircraft means that there must
be at least one sensor involved that reports the condition and position of the craft back to the
flight-control board so that the repositioning can stop as desired. The main sensor used in
the HoverflyOPEN board is the Invensense model ITG-3200, MEMS 3-axis gyroscope. Figure
2.11 is a photo of the gyroscope mounted on the HoverflyOPEN board.

This sensor can rapidly detect minute variations in angular velocity changes in all three
of the principal axes discussed earlier. Figure 2.12 shows the three predetermined axes that
the sensor is designed to measure, which makes it critical to align these axes with the three
quadcopter axes. The +Y axis shown on the figure must be aligned with the quadcopter’s
forward direction.

The dot printed on the upper left hand corner of the sensor is the key to proper alignment
on the board. The board itself must also be properly aligned with the quadcopter’s forward

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 23

Figure 2.11 Invensense ITG-3200 gyroscope.

Figure 2.12 ITG-3200 sensor axes.

 24 B u i l d Y o u r O w n Q u a d c o p t e r

direction. Failure to properly align the board means the gyroscope cannot accurately measure
the appropriate angular velocities, thus making quadcopter control questionable.

Raw data on each axis is sent in serial format from the gyroscope sensor to the main
processor on the flight-control board at a very fast rate. This main processor is the Parallax
Propeller chip, which will be thoroughly discussed in Chapter 4. What should be noted now
is that a great deal of information is extracted from the raw data by some very involved and
complex calculations in order to generate the appropriate motor-control speed commands
that reflect what the user wants to do with the quadcopter. There is also a good deal of
ongoing real-time filtering to ensure that only the relevant user commands are being
followed and are not being disturbed by noise.

PID Control
PID is an acronym for proportional integral derivative and is used in almost all quadcopter
control systems. The theory behind PID is relatively simple to understand and begins with
the block diagram shown in Figure 2.13.

All control systems have process variables that are required to be at a specific value. For
example, the thermostat is part of the very familiar home-heating (and maybe cooling)
system. The room temperature is the process variable in such a system. We could set a
temperature on the thermostat, and if that value was higher than the actual room temperature,
the thermostat would direct the furnace to heat the room by using the available heating
system (such as hot air or hot water). The system would continue to provide heat to the room
until the new temperature was reached. As the room cooled naturally from heat losses
through windows and open doors, the room temperature would drop below the set point and
cause the control process to repeat. The heat losses are called system disturbances and are the
reason why the thermostatic-control system is needed. All real-world systems have their own
disturbances, and thus, need a control system to maintain the balance, equilibrium, or set
point. Table 2.3 relates the above system operation to the Figure 2.13 elements.

The thermostatically controlled room heating system is an example of a closed-loop
control system. A sensor continuously reads the room temperature and provides this to the
controller, which already has a set point. The difference between the real-time sensor reading
and the set point is the error signal used by the controller to actuate the system or plant, such
that the error drives toward a zero difference. Sometimes there is an offset value permitted
between the sensor value and the set point when it is not realistic to obtain a zero error or the
system functions require an offset.

Figure 2.13 PID block diagram.

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 25

Control systems are normally designed to minimize disturbance effects. Several key
parameters that characterize control system performance need to be defined. These are:

•	 Rise time
•	 Percent overshoot
•	 Settling time
•	 Steady-state error

Figure 2.14 shows a typical PID response graph with the previously mentioned key
parameters annotated within the figure. This graph represents the process variable response

System Component Description

Set point The temperature set on the thermostat

Process variable Room temperature

Error signal Set point minus process variable

Output Abstraction for the room heating process

Feedback gain Normally zero for this type of control system

Controller Varies with thermostat type—might be a microcontroller;
old fashion type uses bimetallic electrical contacts

Plant Furnace and all its related components

Table 2.3 System Components Related to PID Block Diagram

Figure 2.14 PID response graph.

 26 B u i l d Y o u r O w n Q u a d c o p t e r

to a step input applied to the control system. Time is usually the X axis, while the Y axis will
normally be the process variable units, such as the temperature degrees in our thermostat
example. The following definitions are commonly but not universally accepted in the control
industry:

•	 Rise time—The time to go from 5% to 95% after the step is applied.
•	 Percent overshoot—The peak value of the response expressed as a percentage of the

steady-state value.
•	 Settling time—Time to settle to within a certain percentage of steady state. Often

chosen at 5% but not guaranteed.
•	 Steady-state error—The actual output versus the ideal output.

Several other performance parameters are also used to help characterize control systems.
These are:

•	 Deadtime—A measure of the time delay between a process variable change and
system recognition of that change.

•	 Loop cycle—Time between calls to the control system algorithm.

Both of these parameters will have a significant impact on a quadcopter control system.
Minimizing dead time and loop-cycle timing is critical to optimizing the control algorithms.
Careful optimization of the source code and incorporation of the assembly language routines,
where necessary, will go a long way toward minimizing both of these parameters.

PID Theory
It is time to examine the PID theory now that the system configuration and definitions have
been covered. Figure 2.151 shows the classic PID block diagram. Each section will be
discussed separately.

Figure 2.15 Classic PID block diagram.

1Wikipedia PID block diagram.

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 27

P Block
The P or proportional block depends only upon the difference between the set point and the
process variable. The P block math equation is

Kpe (t)

where Kp is the block gain and e(t) is the error signal as a function of time. This is a simple
linear system response. For example:

Given that the error signal at time t0 is 5 and Kp is 10, then the output from this block is
50. You must be careful in setting the value for Kp. Too high a value will make the
system unstable and fall into an oscillation state that would be very bad for system
operations. A procedure for setting Kp along with the other block constants will
follow this section.

I Block
The I or integral block depends upon a summation of the error signal over time. The I block
math equation is

Ki ∫ te (τ) dτ

where Ki is the block gain and ∫ te (τ) dτ is an integral equation of the error signal as a function
of time.

The integral equation is additive, which allows the output to steadily increase over time
unless the error signal is zero or there are compensating negative error values. The net effect
of the integral block is to drive the steady-state value to zero overall during a time period.
The nominal value for the I block gain is usually very small, which you might expect since
the term acts over a long time period.

There is one issue that arises with this block: the integral term could temporarily increase
to a level that saturates the plant block without driving the steady-state value toward zero.
This is called integral windup. Windup, while a potential issue, is not expected to happen in
the typical quadcopter control system that is discussed in this book.

D Block
The D or derivative block depends upon rapid increases in the process variable to drive the
error signal to zero. The D block math equation is

Kd de (t)/dt

where Kd is the block gain and de (t)/dt is a derivative equation of the error signal as a function
of time.

This block gain must be chosen carefully to allow the system to respond to rapid process
changes, yet not to over respond to noise added to the feedback loop. The practical tradeoff
is to set a low value for the Kd gain and a small derivative time Δt that approximates de(t)/dt.

Tuning
Tuning is the process of determining useful gain values to use with the PID algorithm. Two
methods will be discussed:

1. Trial and Error Method
2. Ziegler-Nichols Method

 28 B u i l d Y o u r O w n Q u a d c o p t e r

Trial and Error Method
Do not be deterred by this method’s name because there is a definitive approach that is
followed in this method. The steps are:

1. Set the Ki and Kd block gains to zero.
2. Increase the Kp block gain until the system becomes unstable, as determined by

observing system oscillation.
3. Increase the Ki block gain to stop the oscillation induced in step 2.
4. Increase the Kd block gain to improve the system time response to an acceptable

value.

By following the above steps, a reasonable set of block gains should be able to be set.
These values should be tweaked to reach acceptable performances in actual operation. For
instance, it may be observed that the Kd block gain is set too high because the system is too
reactive to noise.

Ziegler-Nichols Method
This tuning method is similar to the Trial and Error method in that the first two steps are
identical.

1. Set the Ki and Kd block gains to zero.
2. Increase the Kp block gain until the system becomes unstable as determined by

observing system oscillation.
3. Note the Kp block gain at which oscillation starts. This will now be called critical gain

or Kc. Also note the oscillation period. This will be called Pc.
4. Adjust all block gains per Table 2.4.

As you can clearly see from Table 2.4, control systems do not always have to contain all
three of the PID blocks. Sometimes only the P block is needed, as we saw in our thermostat
example.

Real-world PID control systems often contain an auto tuning capability in which the
block gains and response times are both detected and set to optimize system operation.
LabVIEW (LV) discussed in the next section contains a PID module that has an auto-tune
capability as well as a manual tuning capability.

LabVIEW PID Simulation
I will be using the LV 2012 student edition for my simulation platform. It is the latest student
version available at the time of this writing. Be aware that commercial, non-educational
versions of LV cost about $1200. It is not a cheap program. However, a student version is

System Type Block Gain Integral Time Derivative Time

P 0.5 K
c

n/a n/a

PI 0.45 K
c

P
c
/1.2 n/a

PID 0.60 K
c

0.5 P
c

P
c
/8

Table 2.4 Ziegler-Nichols Block Gains

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 29

available that is very reasonable in cost and even comes with an Arduino microprocessor.
This package is available from Sparkfun.com. The student version is not crippled in any
way; users are simply not permitted to develop commercial (meaning for sale) products
incorporating LV without purchasing a retail LV license.

Every program in LabVIEW (LV) is a called a virtual instrument or VI. This naming
system is from the very earliest days (1986) when LV was first created to control electronic
test equipment. LV has evolved to far more than instrumentation control, but it still pays
homage to its beginnings with the file extension .vi. Clicking on the Blank VI icon will create
the next screen, which is shown in Figure 2.16.

A careful look at this figure should reveal two screens, one named Front Panel and the
other Block Diagram. LV creates these two views for each VI. The Front Panel is the user
interactive screen or GUI, while the Block Diagram houses the code. All LV programs consist
of Function Blocks interconnected with wires—the kind of wires that carry data not electricity.
Functions are selected off a series of palettes, such as the one shown in Figure 2.17. Palettes
are selected from the View drop-down menu. The palette selected is the Controls Palette with
the Express controls displayed.

I did not create a PID VI myself but instead downloaded one named Single Axis
Quadcopter.vi developed by National Instrument application engineers to demonstrate LV’s
ability to simulate a portion of a quadcopter’s functions. This VI is available at https://
decibel.ni.com/content/docs/DOC-22670. There is one limitation that you should be aware
of before running this VI. It depends upon two sub-VIs that are part of the LabVIEW 2012
PID and Fuzzy Logic Toolkit. This software toolkit is an expensive add-on to LV; however,
you are able to download it from www.ni.com and install it for a limited time in an evaluation
mode. This was how I was able to run the single axis simulation. Note that there are only two

Figure 2.16 Blank VI screenshot.

http://www.ni.com
https://decibel.ni.com/content/docs/DOC-22670
https://decibel.ni.com/content/docs/DOC-22670

 30 B u i l d Y o u r O w n Q u a d c o p t e r

motors, MP2 and MP4, being simulated in this VI because it is a single-axis demonstration.
Figure 2.18 is a screenshot of the VI running.

I set the quadcopter setpoint to +10° for this simulation. After running the simulation for
several seconds, the virtual quadcopter settles into a 10° bank, as you can see from both the
diagram in the top center and the indicator to the right of the quadcopter diagram. The time-
response chart in the lower right shows that the quadcopter smoothly went to the commanded
bank in about one second without any overshoot. This is precisely the type of control
behavior that you should want from a quadcopter flight-control board. Also, notice that the
three PID parameters, Kp , Ki , and Kd may be set to experiment with different values in order
to test how they affect overall performance.

I also ran another simulation, which is shown in Figure 2.19 but this time I increased the
throttle to 70% and increased the angle to 25°.

Take a look at the waveform chart in the lower left corner. MP2 is running at 74% while
MP4 is at 70%, which causes the 25° pitchover to happen. Compare this waveform to that
shown in Figure 2.18, where MP2 is running at approximately 52% and MP4 at 50%, and
which causes the shallower bank angle of 10°.

A much more challenging simulation that you can try is the Untethered Quadcopter.vi
from the same group that created the first VI discussed. Figure 2.20 is a screen shot of the
program running.

Here the challenge is to try to keep the quadcopter figure in the visible flying box by
using a combination of throttle and setpoint angle. Believe me, it is not easy. In fact, this

Figure 2.17 Express controls palette.

 C h a p t e r 2 : Q u a d c o p t e r F l i g h t D y n a m i c s 31

Figure 2.18 Screenshot of the single-axis Quadcopter VI running at 50% throttle and 10° angle.

Figure 2.19 Simulation screenshot with throttle at 70% and angle at 25°.

 32 B u i l d Y o u r O w n Q u a d c o p t e r

simulation actually provides a bit of insight into the skills needed to pilot the real quadcopter,
although I believe the simulation is more sensitive than the real item.

Summary
Because it is important to have a good foundation for studying the particulars of quadcopter
aerodynamics, I began with a discussion of the basics of normal airplane aerodynamics. The
four principal flight forces were introduced along with the concepts of weight and balance
and the closely allied concept of center of gravity (CG).

Basic flight axes were than described along with the corresponding rotations about these
axes: pitch, roll, and yaw. A diagram showed how these axes and rotations applied to the
quadcopter.

Some of the basic quadcopter configurations were shown, including the X configuration,
which is the type used in the Elev-8. The two types of propellers used in this and other
configurations were also described.

The detailed discussion that came next focused on quadcopter flight control because
it differs significantly from normal airplane control. I presented a series of basic equations
that encapsulate how the flight-control system translates normal airplane flight-control
commands to the type needed by a quadcopter. A brief discussion was also presented on the
MEMS 3-axis gyroscope that the HoverflyOPEN controller uses to sense actual quadcopter
movement.

Two sections on proportional-integral-derivative (PID) control and theory were given,
as that is the key technology to ensure smooth and positive control for quadcopter operations.

The chapter concluded with two demonstrations of LabVIEW, the first running a single-
axis PID simulation and the second an untethered quadcopter flying simulation.

As a reward for making it through this chapter, I will now put aside the heavy theory
and go on to show you how to build your own Elev-8 quadcopter.

Figure 2.20 Screenshot of the Untethered Quadcopter.vi.

chapter 3
Building the Elev-8

Introduction
This is a long chapter that will take you through the complete process of building an Elev-8
by using the standard kit parts and a few additional components that are not part of the kit.
Most of the instructions, figures, and assembly drawings in this chapter were created by
Parallax for the Information and Assembly Guide that accompanies their Elev-8 Quadcopter Kit
(#80000) and are being presented with Parallax’s kind permission. (It made no sense for me
to create a new set of instructions when a perfectly acceptable and useful set was already in
existence.) I did take the liberty of adding some additional figures and written instructions
where I thought it would be useful. I also added my own instructions for some highly useful
components that will make your build a bit easier. The entire build should take anywhere
from 10 to 12 hours, provided you have all the requisite parts, tools, and a functional work
space. I will discuss the tools and supplemental materials, but first it is important to review
some safety tips.

Safety
The following bulleted safety items were taken from the Parallax document cited above:

•	 WARNING: CUTTING HAZARD. Rotating ELEV-8 quadcopter blades can cut skin
and underlying tissues. Stay away from a powered ELEV-8 quadcopter and never become
complacent during operation.

•	 WARNING: ENTANGLEMENT HAZARD. Secure long hair and loose clothing or
jewelry when building, testing, and operating your ELEV-8 quadcopter to avoid
entanglement with motors.

•	 WARNING: EYE HAZARD. Always wear eye protection when assembling, soldering,
operating, or repairing your ELEV-8 quadcopter.

•	 Inform yourself of and follow all current federal, state, and local laws regarding
the use of hobby RC aircraft in the area where you plan to operate your ELEV-8 quadcopter.
Review the FAA’s rules in entirety—you are responsible for following them.

•	 This kit is not for beginners. Advanced mechanical skill is required for building and
flying an ELEV-8 quadcopter. RC aircraft experience is highly recommended.

33

 34 B u i l d Y o u r O w n Q u a d c o p t e r

•	 Follow the instructions carefully; incorrect assembly of your ELEV-8 quadcopter could
cause risk of catastrophic equipment failure, personal injury to you or others, and property
damage.

•	 Perform initial electronic speed controller (ESC) programming before installing the
propeller blades. Remove propeller blades before reprogramming the ESCs.

•	 Establish and test the radio link between the RC controller and RC receiver before
installing the propeller blades. Remove propeller blades before testing a different controller.

•	 Always disconnect the battery when not in use.
•	 Store your ELEV-8 quadcopter and its radio controller out of reach of children, pets, and

those who do not know how to use them safely.
•	 Only operate your ELEV-8 quadcopter in an area with no children, unsecured pets, or

livestock, which can be harmed by contact with rotating blades. For example, children and
dogs may try to jump and catch a flying quadcopter, or may run to investigate one that
has just landed.

•	 Only operate your ELEV-8 quadcopter outdoors and away from crowded areas. All
observers should stand a safe distance behind the operator.

•	 Only operate your ELEV-8 quadcopter in an environment where you can maintain
unobstructed visual contact with it. Do not operate at night, or where there is fog, smoke,
or dust that could limit visibility.

•	 Keep your ELEV-8 quadcopter dry! Do not submerge your ELEV-8 quadcopter or operate
it in rainy or damp conditions. Beware of sprinklers and of landing in wet vegetation.

•	 Check the wind speed before flying your ELEV-8 quadcopter. Even a light breeze can
make flying difficult for beginners. No one should fly in high winds.

Most of the above safety items listed are common sense. I did not list several items from
the original document, since I believe that they were based more on a legal perspective with
regard to the company selling a product that might cause damage and/or injury if not used
properly. A complete written copy of the Parallax Assembly instructions is included in every
Elev-8 kit sold. Please refer to that document to read the original version.

Tools and Additional Materials
The following is a recommended tool list that you will need to build the Elev-8:

•	 Soldering iron and rosin-core solder (acid-free solder flux optional)
•	 Component clamp stand
•	 #1 Phillips screwdriver
•	 1∕4-in (0.6-cm) wrench, box-end or socket
•	 11∕32-in (0.9-cm) wrench or nut driver
•	 Wire strippers/cutters (12-16 AWG)
•	 Scissors
•	 Needle-nose pliers
•	 Diagonal cutter
•	 Ruler or measuring tape
•	 Heat gun

I would recommend a soldering iron or solder station that is temperature controlled, as
you will need quite a bit of heat to solder some large connectors and multiple wire assemblies.
Other, smaller connectors will not require that much heat energy to melt the solder. Also, I
recommend that you buy the best quality rosin-core solder that you can find. It is well worth

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 35

the investment. Cold solder joints are the bane of any builder, and they are hard to locate.
The key to quality soldering work is to have good soldering technique, keep the soldering
iron tip clean, and to use the highest-quality solder available. Figure 3.1 shows the essence
of good soldering technique. It is vital that the solder joint be hot enough for solder to flow
easily. It takes practice to apply just the right amount of solder; too little could result in a cold
solder joint, and too much could lead to a short between closely spaced components.

Another issue regarding a good solder joint is the use of lead-free solder. Now, please
don’t get down on me. I am all about maintaining a healthful environment, but the elimination
of lead from solder often produces poor solder joints unless some extra precautions are taken.
The simplest, and probably, the best approach is to apply a high-quality, acid-free solder flux
to the joint prior to heating the joint with the iron. This will allow the lead-free solder to flow
more freely and produce a better-soldered connection. Again, it takes practice to perfect
soldering techniques.

I have one final thought that relates to solder joints as well as other types of electrical
connections. A long-running anecdotal observation contends that 90 percent of all electrical/
electronic malfunctions are related to connection malfunctions. This claim makes a lot of
sense when you think about it. We live in an oxygen rich atmosphere, and oxygen is a great
reduction agent: it wants to oxidize every element it can possibly chemically combine with.
Metal oxides are reasonably good insulators because some of their free electrons have been
taken up by oxygen molecules. This leads to higher and higher resistance being built up in a
connection, which will eventually cause a failure. Of course, current flowing through a
resistance produces heat, which in turn can cause a fire if the currents are sufficiently high.
So, what is the solution? One expensive solution is to gold plate electrical contact surfaces.
Gold doesn’t oxidize and is not subject to this type of failure. It is, of course, very expensive
and not practical for large-scale connectors. For the type of projects that I work on, I can
ensure only that solder joints are sound from both a mechanical and electrical perspective. I
also inspect electrical connections for oxidation and foreign matter, and take appropriate
action to replace or repair a damaged component.

Bill of Material
The bill of material (BOM) is reproduced below in Figures 3.2 to 3.5. It is highly recommended
that you cross-check all the material in the kit against the BOM and contact Parallax if
anything is missing. I have always found them very prompt and attentive to requests from
builders, in instances where parts are missing or otherwise incorrect. All of the kit contents

Figure 3.1 Good soldering technique.

 36 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 3.2 High-level BOM.

Figure 3.3 Airframe BOM.

Figure 3.4 Hardware BOM.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 37

are shown in Figure 3.6, including the two safety glasses that are thoughtfully included by
Parallax for builder safety.

I highly recommend that you obtain two plastic containers that can be set up to store
most of the kit pieces. I would also recommend that after opening each plastic bag in the kit,
you place the pieces directly in a separate container and label each one for your convenience.
Use the Elev-8 V1.2 Assembly Drawings, found online at www.mhprofessional.com/
quadcopter, as a guide to matching the pieces to the part number or assembly step. Figure
3.7 shows one of the plastic containers holding all the hardware pieces and a few of the
electronic pieces.

One word of caution: it is somewhat difficult to differentiate between the ¼-in 4-40 black
screws and the 3-mm × 6-mm black screws. I would suggest separating the screws and then
counting them. There are eight 4-40 screws, while there are sixteen 3-mm × 6-mm screws.

Additional Materials
You will need the following items to be able to fly your Elev-8:

•	 An R/C transmitter and receiver
•	 A three-cell 30C LiPo battery
•	 A LiPo battery charger

Figure 3.5 Electronics BOM.

http://www.mhprofessional.com/quadcopter
http://www.mhprofessional.com/quadcopter

 38 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 3.6 Elev-8 kit contents.

Figure 3.7 Plastic container holding all the hardware and some electronic pieces.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 39

My recommendation is to purchase the Spektrum DX-8 R/C transmitter and the
matching AR8000 receiver. Figure 3.8 shows a photo of the AR8000 receiver. You can find a
photo of the DX-8 transmitter in Chapter 2, Figure 2-9.

The DX8/AR8000 combination is somewhat expensive; however, you will not be sorry
to have purchased this set. The transmitter is excellent, and it comes with many features,
some of which you will use immediately and others that will be available as you progress in
your experience and training. The transmitter and receiver make eight control channels
available, which is plenty to meet your immediate and future requirements. It is really not to
your advantage to buy equipment that just meets your current needs. You would only be
delaying a future purchase needed to keep up with your changing requirements.

The LiPo battery is a choice that is a much less challenging decision. The costs are quite
reasonable for a variety of the batteries. My initial recommendation would be a three-cell
LiPo battery with a 30C rating. The three cells are important because they set the overall
voltage at 11.1 VDC (nominal). This is the minimum necessary to adequately power the
motors and electronics onboard the Elev-8. The 30C is a capacity rating that will power
the quadcopter for almost 20 flight minutes. It is always a tradeoff between weight and
capacity, but I have found the 30C rating to be a sweet spot for this particular quadcopter.
Figure 3.9 is a photo of the LiPo battery used in my Elev-8 build.

Purchasing a good quality LiPo battery charger is also required. LiPo batteries must be
charged using a charger designed for their particular chemistry.

Warning: Do not use an automotive type of charger with a LiPo battery. Attempting to do so will
likely cause the battery to flame and produce a lot of toxic smoke.

Quality LiPo chargers have a balancing circuit that ensures that each cell is appropriately
charged at the level it requires. It would be prudent to spend a little extra money on a high-

Figure 3.8 Spektrum AR8000 R/C receiver.

 40 B u i l d Y o u r O w n Q u a d c o p t e r

quality LiPo charger. Figure 3.10 is a photo of the automatic LiPo battery charger that I use.
It is a Thunder Power RC, model TP610C and is capable of recharging LiPo, NiCad, and
lead-acid storage batteries.

Optional Additional Materials
Although not required, the following materials will either improve the build experience or
add additional functionality to the quadcopter. Note that the Parallax Propeller Quickstart
board is not included in this list because it is discussed in Chapter 4.

Figure 3.10 Automatic LiPo battery charger.

Figure 3.9 3S 30C LiPo battery.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 41

Build Related

•	 Power-distribution board: Quad
•	 Power-distribution cable harness
•	 Two additional EC3 connector kits (10 male/female pairs in each kit)
•	 48 in of 22 AWG red solid core wire
•	 48 in of 22 AWG black solid core wire

A power-distribution board is shown in Figure 3.11. Its purpose is to eliminate the
cumbersome and awkward connections from the battery to the four electronic speed
controllers (ESCs).

Without the power-distribution board, you must construct two somewhat bulky and
clunky wire connection points between the battery terminals and the power wires that
connect to the ESCs. Don’t misunderstand me; you can do the latter, but this board just
makes it so much easier and does so with a much cleaner appearance to boot. It makes use
of wide electrical printed circuit board (PCB) traces that can easily handle the high currents
created when operating the quadcopter. It also has plated vias (plated holes that connect to
the underlying PCB traces) available where the raw battery supply can be accessed. This

Figure 3.11 Quad power-distribution board.

 42 B u i l d Y o u r O w n Q u a d c o p t e r

makes it very easy to tap into the battery supply in order to power an accessory circuit or
module. There is also a two-pin plug available for devices that use this common type of
power supply connector.

A power-distribution cable harness is shown in Figure 3.12. It serves the same purpose
as the quad power-distribution board but uses a premade harness that would be similar to
the homemade one discussed above. Using the cable harness keeps the battery supply totally
shielded; however, you would have no access to it without splicing into the harness.

I will be using a quad power-distribution board that I purchased from Hobbyking. The
additional EC3 connectors will be used to connect the motors and extension wires. It is a
process that is a bit more tedious; however, it makes for more sturdy and reliable connections.

The additional red and black 22 AWG wire will be needed to connect the LED lighting
strips to the auxiliary Propeller-chip control board for light-control purposes. There will also
be plenty of wire remaining for any circuits or modules that you might desire to add at a
later date.

Functionally Related Material

•	 Spektrum TM1000 telemetry transmitter
•	 Spektrum telemetry brushless r/min sensor

The Spektrum TM1000 telemetry transmitter shown in Figure 3.13 sends data from the
quadcopter back to the DX-8. It also comes with voltage and temperature sensors that can
send real-time data back to the DX-8 for the voltage and temperature of a selected component
to be monitored. I will use this module to monitor both the raw battery voltage and the
battery temperature. The DX-8, in spite of being labeled an R/C transmitter, also contains a
telemetry receiver. The data being sent back may be displayed on the DX-8 LCD screen,
which is another reason to buy the DX-8.

The Spektrum telemetry brushless r/min sensor is shown in Figure 3.14. This sensor will
be used to monitor the rotational speed of one of the Elev-8 motors. It will provide useful
data when you are creating a new flight-control program and will also serve as a check on
the real-time performance of the quadcopter.

Figure 3.12 Power-distribution cable harness.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 43

Figure 3.13 Spektrum 1000 telemetry transmitter.

Figure 3.14 Spektrum telemetry brushless r/min sensor.

 44 B u i l d Y o u r O w n Q u a d c o p t e r

Beginning the Build
I have now come to the point where the actual build starts. Remember to have all the
recommended tools, all the kit parts, and a well-lighted and comfortable work area available.
These steps will go a long way in making the whole build experience enjoyable.

Motor Set Screws
Start by applying Blue Loctite to the motor set screws, to prevent them from coming loose
during flight and causing equipment failure.

1. Locate the Blue Loctite 242, the four motors, and the small Allen wrench in the
Elev-8 Hardware Kit.

2. Refer to Figure 3.15. Using the Allen wrench, carefully remove the motor set screws
(item 2) from each motor (item 1).

3. The screws might be very tight; be careful not to break your Allen wrench.
4. For each motor, apply a small amount of Blue Loctite to the set-screw threads and

carefully reinstall the screws. Seat each screw firmly but do not over tighten. Allow
the Blue Loctite to set for 10 minutes. It fully cures in 24 hours.

Solder the Motor and ESC Connectors
In this step, you will solder EC3 connectors to each end of the long extension leads. You will
also solder an EC3 connector to each of the motor leads. Finally, you will solder EC3
connectors to each of the ESC leads that connect to the motor. The EC3 connectors will give
you the ability to switch around the wire connections when you check your motor direction
later in the build.

Be sure to follow the specified genders for all of the leads. The general rule is if a lead is
supplying power, then it will be a female connector. All connectors are eventually protected
with shrink tubing; hence female connectors will not accidentally short out if disconnected
from the mating male connector.

Please follow the instructions below.

1. Gather together your motors, the red 16 AWG wire, EC3 connectors, wire cutters,
wire stripper, ruler, and soldering supplies.

Figure 3.15 Motor set-screw adjustment.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 45

2. Using a ruler and wire cutters, measure and cut twelve lengths of the red 16 AWG
wire; each one should be 12 in (30.5 cm) long. These wires will be referred to as
extensions from this point on. Refer to Figure 3.16.

note: I have deviated a bit from the Elev-8 package instructions by having you add EC3
connectors between the wire extensions and the motors. I did this because it increases
reliability at these critical connections and avoids a likely failure point if you inadvertently
create a cold solder joint when connecting one wire to another. This is why I recommended
that you purchase additional EC3 connectors over and above what is contained in the kit.

3. Use wire strippers to remove the insulation from each extension and expose about
1∕8 in (0.3 cm) of wire at each end. Pre-tin the exposed wires for easier soldering in the
next step.

4. Next, solder a female EC3 connector at one end and a male EC3 connector at the
other end. To solder an EC3 connector, insert the 1∕8-in exposed tip of the wire into the
cup end of the bullet connector, and fill the cup with solder but do not overfill.
Figure 3.17 shows a soldered EC3 being held in a component clamp stand.

5. For this step, use all male EC3 connectors. Solder a male EC3 connector to the ends
of all the motor leads.

6. If necessary, use wire strippers to expose 1∕8 in (0.3 cm) of metal on the end of each
speed controller's blue wire leads.

7. Solder a female EC3 connector to the end of each speed controller's blue leads. Refer
to Figure 3.18.

8. Connect the male EC3 connectors to the female EC3 connectors of your speed
controllers and the male motor connector to the matching female on the extension
and verify that they fit properly. Refer to Figure 3.19.

9. Disconnect them again for now.

Figure 3.16 ESC to motor wiring.

 46 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 3.18 Female EC3s connected to an ESC.

Figure 3.19 Wire extensions connected to an ESC and motor.

Figure 3.17 Soldered ESC wires.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 47

Apply Heat-Shrink Tubing to Motor and ESC Leads
Heat-shrink tubing will protect the solder joints and prevent unintended electrical contact.
As shown in Figure 3.20, the tubing is shrunk over both a female EC3 wire extension
connector and a male EC3 connector.

This protection keeps the leads from accidentally making contact with each other, yet
allows connectors to be plugged and unplugged as needed when testing motor connections
in a later step.

note: Using this technique of applying shrink tubing might leave a very small amount of exposed
connector. However, there is a very small chance that any exposed areas can inadvertently short.
The following approach is quick and efficient and will speed your build.

1. Locate the 27-in (68.6-cm) length of 3∕16-in (0.2-cm) (black tubing. Measure and cut it
into 5∕8-in (1.6-cm) pieces, which will be about 42 pieces total.

2. Slide shrink tubing over the male and female EC3 connectors soldered to the wire
extension leads.

3. Plug in the opposite connector from the motor assembly. Position the tubing to cover
both connectors and solder joints.

4. Carefully apply heat to all the shrink tubing on all of the connectors.
5. Leave the wire extensions plugged into the motors, but unplug the wire extensions

from the ESCs for now.

Motor-Mount Assembly
In this step, you will attach the motor mounts, motors, and landing gear legs to the booms.
Do not attach the propellers to the motors yet!

Figure 3.20 Heat-shrink tubing over female and male EC3 connectors.

 48 B u i l d Y o u r O w n Q u a d c o p t e r

1. Gather the items listed in the Figure 3.21.
2. Attach each motor (item 1) to a motor-mount bottom plate (item 8). Use four 3-mm

× 6-mm screws (item 9) for each motor.
3. Use two 3∕8-in (1-cm) pan-head screws (item 5) and two internal tooth-lock washers

(item 6) to attach two 5∕8-in (1.6-cm) nylon standoffs (item 7) to each motor-mount
bottom plate. Use two more 3∕8-in (1-cm) pan-head screws and internal tooth-lock
washers (item 6) to attach each motor-mount top plate (item 3) to the nylon standoffs
(item 7).

4. note: I have added the following step to tidy up the boom wire installation.
Drill a 5∕32-in (0.4-cm) diameter hole that is located 1∕2 in (1.3 cm) away (toward the
motor end) from one of the two holes that are spaced 23∕4 in (7 cm) apart. Refer to

Figure 3.21 Motor mount assembly diagram.

Figure 3.22 LED power lead access hole position.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 49

Figure 3.22 for this hole position. This new hole will allow you to thread the LED
power leads through the boom in lieu of being outside of the boom.
Warning: Drill the hole on one side only. Do not drill through the boom.

5. One end of each boom (item 4) has two holes spaced about 1 in apart. Slide an
assembled motor mount on this end of each boom so that the motor leads go through
the boom tube. Holes in the motor-mount top and bottom plates will line up with
the holes in the boom.
note: Position the boom so that the extra hole drilled in step 4 is facing downward.

6. Secure each motor-mount assembly to the last hole in its boom with a 1-in (2.5 cm)
pan-head screw (item 2) and a lock nut (item 10).

7. Thread a 1-in (2.5-cm) pan-head screw (item 2) through the second hole in each boom
and motor-mount assembly. This screw does not use a lock nut. Instead, self-tap the
screw into the shorter leg of a landing gear (item 11) aligned parallel to the boom.

Boom Accessories
Your Elev-8 Quadcopter Kit comes with two options for accessorizing the booms: checkered
tape and adhesive-backed LED light strips. These accessories are optional but highly
recommended. You can apply either, both, or none to the booms. Many people choose to put
white LED strips and black/white tape on the front booms, and red LED strips and red/
white tape on the back booms. This makes it easy to identify the front and back of the
quadcopter during flight. If you wish to use both, apply the checkered tape before applying
the LED light strips.

note: The decal application differs from what I mentioned in Chapter 2, but it does make sense and
I would concur on placing the decals and LED strips as instructed.

1. Cut each sheet of checkered tape in half lengthwise to make four pieces. Apply a
piece of tape around each boom. This will make two red/white booms and two
black/white booms.

2. Locate the black and red 22 AWG wires in the Elev-8 Electronics Kit and the
additional wire if you have decided to add a light controller to the quadcopter.

3. For a non-light-controller installation, follow this step:
Cut each 22 AWG wire into two pieces approximately 9 in (23 cm) long, and then
strip 1∕4 in (0.6 cm) of insulation from each end. You will have four black leads and
four red leads for your LED tapes.

4. For a light-controller installation follow this step:
Cut each 22 AWG wire into two pieces approximately 14 in (35.6 cm) long, and then
strip 1∕4 in (0.6 cm) of insulation from each end. You will have four black leads and
four red leads for your LED tapes.

5. Locate the two LED tape strips. The yellowish LEDs shine white, and the clear LEDs
shine red. Cut each strip in half along the solid black line. See Figure 3.23 for
confirmation of where to cut. Cutting in the wrong place will destroy the strip.

6. Each LED tape section has tiny (+) and (–) contacts on one end. Solder a red 22 AWG
lead to each (+) contact, and solder a black 22 AWG lead to each (–) contact. Label
the ends of each wire pair to indicate which boom they are attached to, i.e., “left rear
boom.”

7. Thread the red and black wires through the hole that you drilled in the boom, as
shown in Figure 3.22. Push the wires toward the center, away from the motors.

8. Peel the backing off of an LED tape section, and position it along the underside of a
boom (over the checkered tape), with the wires pointing away from the motor.

 50 B u i l d Y o u r O w n Q u a d c o p t e r

9. Measure and cut four pieces of ¾-in (1.9-cm) clear heat-shrink tubing. Each one
should be 4.5 in (11.5 cm) long.

10. Slip the heat-shrink tubing over each boom to cover the LED strip and its solder
joints, and apply heat to shrink it in place. Refer to Figure 3.24 to see a completed
assembly mounted on a boom.

Attach Motor/Boom Assemblies to the Bottom Chassis Plate
In this step, you will attach each motor/boom assembly to the bottom chassis plate. (This kit
comes with two identical quad chassis plates. You will use one in this step and the other one
as a chassis top plate in a later step.) Refer to Figure 3.25 for the items needed from your
Elev-8 Airframe and Hardware kits.

1. Locate the correct mounting holes in the bottom chassis plate to use for the motor/
boom assemblies.

2. Position a motor/boom assembly (item 2) on the bottom chassis plate (item 3).
The boom tube rests on top of the plate with the motor axle pointing upward,
and the LED tape facing downward. The free end of the landing-gear leg slips
underneath the plate.

3. Thread a 11∕4-in (3.2-cm) long pan-head screw (item 5) through the end of the landing
gear’s longer leg, through the underside of the chassis plate (item 3) and through the
boom tube (item 2). Secure it in place with a threaded 5∕8-in (1.6-cm) nylon standoff
(item 1).

Figure 3.23 Cutting the LED lighting strip.

Figure 3.24 Completed LED strip lighting assembly.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 51

4. note: Skip this step if you are using a quad power-distribution board.
Thread a 1-in (2.5-cm) long pan-head screw (item 4) through the underside of the
chassis plate (item 3), and then through the last hole in the boom (item 2). Secure it
in place with a threaded 5∕8-in (1.6-cm) nylon standoff (item 1).

5. note: Use this step for a quad power-distribution board installation.
Thread a 11∕4-in (3.2-cm) long pan-head screw (item 5) first through one corner hole
of the quad power-distribution board, then through the underside of the chassis
plate (item 3), and then through the last hole in the boom (item 2). Secure it in place
with a threaded 5∕8-in (1.6-cm) nylon standoff (item 1). Figure 3.26 shows the quad
power-distribution board installed.

6. Repeat the steps until all four motor/boom assemblies are attached to the bottom
chassis plate.

Solder the Power Harness Together

note: I have copied these instructions verbatim from the package instructions. Since I did not
solder a power harness together, I have no photos of this process, and thus, I must refer you to the
photos contained in the package instructions. As you read through the following instructions,
I think you will get an appreciation of why I chose to use the quad power-distribution board. My
instructions on installing the quad board follow this instruction set.

In this step, you will solder together your Elev-8 quadcopter’s power harness. It will provide the
connection between the battery pack and the ESCs (and LED tapes if you are using them).

1. Find the black and red 12 AWG wires in your ELEV-8 Electronic Kit; these will be the
power harness leads. Strip 1∕4 inch of insulation off one end of each wire.

Figure 3.25 Attaching motor/boom assemblies to the bottom chassis plate.

 52 B u i l d Y o u r O w n Q u a d c o p t e r

2. Solder all the ESC speed controllers’ red leads to the single 12 AWG red lead, ends-to-end.
Likewise, solder all of the ESC’s speed controllers’ black leads to the single 12 AWG black
lead, ends-to-end, as shown in the picture at right, top. [Author’s note: See the layout
in the package instructions.]

3. Cut two 1½-inch lengths of ½-inch black tubing. Slip a piece of tubing past each of the
two solder joints you just made on the power harness so that they sit closest to the ESCs.
Do not shrink them yet, just keep them out of the way of the solder joints.

Position the power harness inside the ELEV-8 chassis bottom, but do not secure it in
place yet. The recommended layout is shown on the following page. [Author’s note: The
layout is in the package instructions.]

4. If you are using LED tapes, bundle together all of their red leads. Align these thinner
wires alongside the red 12 AWG wire in the opposite direction from the ESCs’ wires, and
solder them into place, as shown at right, middle. [Author’s note: See the layout in the
package instructions.] This will make a neater package for the heat shrink tubing.

5. Likewise, solder the LED tapes’ black leads to the solder joint where all the other black
leads meet on the power harness.

6. Slide the heat shrink tubing back up and over each solder joint. Apply heat with a heat
gun or hair dryer to shrink the tubing into place, as shown at right, bottom. [Author’s
note: See the layout in the package instructions.]

7. Decide how long to trim the 12 AWG power harness leads. If you use the layout shown
below [Author’s note: The layout is in the package instructions] and you will be

Figure 3.26 The installed quad power-distribution board.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 53

strapping your batteries to the top of the chassis, you can trim the power harness leads to
about 4 inches. If you are going to use a custom layout to accommodate extra electronics,
decide how long to make the power harness leads. Trim the 12 AWG wires to the desired
length, and then strip about 1⁄8 inch of insulation from the end of each one.

8. Locate the packet of gold bullet connectors and plastic housings in the ELEV-8 Electronics
Kit. You will need two bullet connectors and one plastic housing.

9. Solder a bullet connector onto the end of each 12 AWG lead. Insert the exposed tip of the
wire into the cup end of the bullet connector, and fill the cup with solder.

10. Insert the bullet connectors into the flattened end of the blue housing. The red lead goes
into the “D” shaped side and the black lead goes into the “O” shaped side. It will take
some force for the bullet connectors to click into place.
Pro tiP: We recommend using a flat-head screwdriver to hold the bullet connector in
the housing and then use a hammer and tap the connector into place.

11. Reposition the power harness inside the ELEV-8 chassis bottom. Secure the ESCs in place
with zip ties.

12. Connect the battery pack to the power harness. The LED tapes, if you are using them,
should now come on.

Installing the Quad Power-Distribution Board
This instruction set assumes you have chosen to purchase a quad power-distribution board
and are ready to install it. The installation is quite simple in comparison to building your
own power-distribution harness.

1. The power-distribution board should already be mounted on the bottom chassis
plate, as shown in Figure 3.26.

2. Tie-wrap all the ESCs down, and thread both the red and black ESC power leads
through the bottom chassis plate, as shown in Figure 3.27.

Figure 3.27 The ESCs mounted and the power leads threaded.

 54 B u i l d Y o u r O w n Q u a d c o p t e r

3. Solder a male EC3 connector to the end of each speed controller’s red and black leads.
4. Place a 5∕8-in (1.6-cm) piece of shrink tubing so that it covers the solder connection

but does not overlap onto the male connector.
5. note: I used red shrink tubing for the red leads and black shrink tubing for the

black leads. It is not very important to do this, yet it does lend a nice touch to the
installation.

6. Connect all the ESC power leads to the power-distribution board, ensuring that the
red leads are inserted into the red EC3 board connectors and the black leads into the
black EC3 board connectors. See Figure 3.28 showing all the ESC power leads
connected to the quad power-distribution board.

7. Leave all the LED wiring unconnected for now. I will show you how to wire the LED
strips in the next chapter.

8. Figure 3.29 shows all the ESCs connected to their respective motor wire extensions.
Additionally, I added extra ty-wraps to help minimize the wiring confusion. I also
labeled all the BEC cables and all the LED-strip wires, which will greatly help when
they are connected to the flight controller and LED controller, respectively.

Configure Your Transmitter
I used a Spektrum DX-8 R/C transmitter shown in Figure 3.30 for the configuration. Other
model R/C transmitters will be similarly configured because most conform to the same R/C
manufacturer standards. For best results, follow the transmitter setting recommendations in
Table 3.1 to configure your transmitter. Refer to Figure 3.31 to see how your transmitter’s
2-axis joystick controls will translate into Elev-8 quadcopter motion with these settings.

note: I have discussed this “translation” in depth in the section on “Flight Controls” in Chapter 2.
I just included the package instructions to maintain consistency.

Figure 3.28 ESC leads connected to the quad power-distribution board.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 55

Figure 3.29 All the ESCs connected to the motor wire extensions.

Figure 3.30 Spectrum DX-8 R/C transmitter.

 56 B u i l d Y o u r O w n Q u a d c o p t e r

Programming the Electronic Speed Controllers
In this step, you will program the motor’s ESCs with an ESC Programming Card. The ESCs
should not be plugged into the motors yet. If the ESCs are plugged into the motors, disconnect
them now.

note: The ESC Programming Card was added to the kits in April 2013. They are also available
separately from http://www.parallax.com; search for “85000.”

Figure 3.31 Transmitter 2-axis controls translated to Elev-8 motion.

Box model type ACRO (Plane Mode)

End point adjustment Set to 50% initially. (If the Elev-8 still seems too reactive, reduce
to 30% until you get used to flying it.)

Dual-rates (D/R) 100%

Channel reverse Normal: Hi Tech Spektrum, JR Brands
Reversed: Futaba brand

Trims Centered

Sub-trims Centered

Gain adjust Set gain on 5th channel. Start with 25%; add or subtract based
on flight stability.

Exponential After gaining experience, add up to 30% into aileron and elevator.

Table 3.1 Transmitter Setting Recommendations

http://www.parallax.com

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 57

1. Connect an ESC to the ESC programming card’s BEC port. Be sure to line up the
black wire with (-), the red wire with (+), and the white wire with (Signal).
Warning: Do not connect to the Programming Card’s BEC port and Batt port at the same
time; this would damage the card.

2. Connect your charged LiPo battery to the power harness.
note: I changed the sequence from the original order shown in the Parallax instruction
sheets. The programming card is not recognized if you connect the LiPo battery first and then
connect the card to the ESC. This is probably due to the default ESC initialization sequence.

3. Set the ESC card to the configuration shown in Figure 3.32 and Table 3.2, and then
push OK to program the ESC. Repeat with each ESC, using the same settings. Be
sure to cycle power between each programming cycle.

Connect the Motors and Synchronize the ESCs
After programming the ESCs, it is time to connect each one to its motor and test it to make
sure it is turning in the proper direction. For this step, your receiver will temporarily connect
directly to (and receive power through) each ESC.

Warning: Do not connect a battery or other power source and an ESC to your receiver at the same
time. If you do, you will permanently and catastrophically damage both the ESC and receiver.

StoP: You should not have propeller blades on your motors yet! If you do, remove them now!

1. If you have not done so already, bind your transmitter to your receiver as per your
R/C controller’s instruction manual.

Figure 3.32 ESC programming.

 58 B u i l d Y o u r O w n Q u a d c o p t e r

2. Identify which edge of the chassis will be the front of your Elev-8 quadcopter. If you
have used the checkered stickers and/or the LED tapes, the front edge would be
between the two black-checkered, white-LED booms.

3. Put a piece of tape on the output shaft of each motor so that you can easily tell the
direction of rotation.

4. Connect an ESC’s 3-pin socket to the throttle port on your receiver.
5. Gently apply the throttle to see in which direction the motor turns. Refer to Figure

3.33 to identify the direction in which each motor needs to turn.
6. If the motor is not turning in the proper direction, disconnect any two of its leads,

reverse them, and reconnect.
7. Label the ESC with its motor position number, both on its case and on its 3-pin

socket.
8. Repeat with each ESC until all motors are turning in the correct direction and each

ESC case and lead are numbered.

Brake Off

Battery type Li-xx

Cut-off type Soft-cut*

Cut-off voltage Middle

Start mode Normal

Timing mode Middle

Music/Li-Po cells (none)

Governor mode Off

* Soft-cut (also called Reduce Power) lets you know when the
quadcopter’s batteries are running low. If you set this to Cut-off/Shut
Down, your quadcopter will simply fall out of the sky when it reaches
a certain battery level.

Table 3.2 ESC Programming Parameters

Figure 3.33 Motor rotation.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 59

9. When you are sure your motor connections are all correct, apply heat to finish
shrinking the tubing over the motor/ESC connector joints.

10. To synchronize the ESCs, power on the Elev-8 quadcopter. Turn on your transmitter,
then set the throttle to max position. After the standard startup sequence, two
separate beeps will indicate that the max throttle position has been set and stored.
Lower the throttle to min position. You will hear three beeps, which indicate that
min throttle position has been set and stored.

Chassis Top-Plate and Control-Board Assemblies

note: I would recommend reading Chapters 7 and 8 now if you are considering installing a video
system for use with your quadcopter. Mounting the video camera frame assembly would be easier
at this point with the chassis top plate not yet installed. You certainly could continue with the
assembly without a video camera frame installation but eventually you will have to disassemble
your quadcopter back to this point if you later decide to install it.

In this step, you will prepare and attach the chassis top plate. Then, you prepare and
attach the control board to its mount plate.

note: The control board mount plate has slots around all four edges.

1. Gather the items shown in Figures 3.34 and 3.35.
2. Pull all the ESCs’ 3-pin leads together towards the front of the chassis.
3. Refer to Figure 3.33 to locate the correct holes in the chassis top plate (item 2) in

order to attach the four 11∕4-in (3.2-cm) nylon standoffs (item 1).

Figure 3.34 Chassis top-plate assembly.

 60 B u i l d Y o u r O w n Q u a d c o p t e r

4. Attach each nylon standoff (item 1) to the top of the chassis top plate (item 2) with a
3∕8-in (1-cm) pan-head screw (item 3).

5. Attach the chassis top plate to the standoffs on top of the booms using ¼-in (0.6-cm)
black pan-head screws. There will be two screws required for each boom.

6. Refer to Figure 3.35. Rubber grommets are included with the control board. Insert a
rubber grommet (item 3) into the large mounting hole on each corner of the control
board (item 4). These grommets reduce vibrations transferred to the control board
during flight.

7. Insert each 3∕8-in (1-cm) pan-head screw (item 1) through a washer (item 2), then
through an installed grommet, and finally, into the control-board mount plate (item
5). The screws are self-tapping into the mount plate, so only gently hand-tighten to
avoid stripping the hole.

note: You may want to use 1∕2-in (1.3-cm) 4-40 nylon screws and nuts in lieu of the steel pan-head
screws described in step 6 above. Figure 3.36 shows the top of the control board mounted with the
nylon screws. Notice that I did use the steel washers. The underside of the chassis board mount
plate is shown in Figure 3.37.

You can clearly see the nylon 4-40 nuts attached to the nylon screws. There are two
advantages to changing from the steel pan head screws to the nylon screws. First, because
nylon is much less stiff than steel, the nylon screws will transmit much less vibration to the
control board. The second advantage is that using nylon nuts is a more secure way of
fastening the control board to the mount plate compared with using ordinary machine
screws to self-tap into the mount board.

Figure 3.35 HoverflyOPEN board mounting.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 61

Figure 3.36 Control board mounted with nylon screws.

Figure 3.37 Underside of the chassis-board mount plate.

 62 B u i l d Y o u r O w n Q u a d c o p t e r

Mount the Control-Board Assembly onto the Chassis
In this step, you will enclose the control board within its protective top plate, and then
mount the control-board assembly onto the completed Elev-8 quadcopter chassis.

1. Gather the items listed in Figure 3.38.
2. Find the arrow on the control-board silkscreen, as shown in Figure 3.39. This arrow

points to the front of the control board, which must be facing the same direction as
the front of the Elev-8 chassis.

Figure 3.38 Control-board mount assembly.

Figure 3.39 Mounted HoverflyOPEN board (with steel screws).

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 63

3. Set the control-board assembly over the standoffs in the chassis top plate. Make sure
the front of the control board is aligned with the front of the chassis.

4. Align the control-board top plate over the control board. The small hole near the
center of the control-board top plate is for a light pipe. Make sure this hole is directly
above the LED on the control board. This will make light from the LED visible when
the top plate is in place.

5. Thread each 1-in (2.5-cm) pan-head screw (item 2) through a corner hole in the
control-board top plate (item 3), then through a ½-in (1.3-cm) nylon spacer (item 4),
then through a corner hole in the control-board assembly (item 5), and finally into a
standoff on top of the chassis (item 6). Gently tighten.

6. Insert the light pipe (item 1) into its hole in the control-board top plate (item 3), until
it touches the LED underneath. Trim the light pipe to length.

7. Slip your battery between the control-board mount plate and the chassis top plate,
and secure it in place with the nylon straps.
note: If you are using the quad power-distribution board, you might find it more
convenient to mount the battery under the bottom chassis plate but over the quad board. You
will need to use 3∕8-in (1-cm) spacers between the battery and the bottom chassis plate to avoid
squashing the quad board.

8. Mount your receiver to the chassis with zip-ties, referring to its documentation for
best placement recommendations.

Control-Board Connections
In this step, you will connect your ESCs and receiver to your control board. The receiver
connects to the receiver port’s 2 × 9 male header on the left edge of the control board, as
shown in Figure 3.40. The electronic speed controllers connect to the ESC port’s 2 × 12 male
header on the front edge of the control board, as shown in Figure 3.41.

Figure 3.40 Receiver ports.

Figure 3.41 ESC ports.

 64 B u i l d Y o u r O w n Q u a d c o p t e r

1. Connect the receiver to the receiver port, with the five signal connections listed
below. Use the 3-wire extension cables included in the Elev-8 Electronics Kit.

A = Aileron

T = Throttle

R = Rudder

E = Elevator

G = Gear (ON: EPA value is Primary Gain, Altitude Hold is off.)
 (OFF: EPA value is Altitude Hold Gain, Altitude Hold is on.)

2. Connect each motor’s ESC controller to the corresponding pins on the ESC port.
3. Match the motor numbers in Figure 3.32 to the port numbers in Figure 3.41.
4. Double-check your connections—it’s easy to make a mistake here.

Mounting the Propeller Blades

Caution: Mount the propeller blades only when you are ready to fly.

I would highly recommend that you balance all of the propellers before mounting them.
Balancing the propellers will greatly reduce the vibrations that result from slight imbalances
that are likely to be present in the plastic propellers supplied with the kit. Even very slight
imbalances create considerable vibration because of the very high propeller rotations.
Reducing vibrations will also improve the performance of the in-flight video system
described in Chapter 8. I used a magnetic propeller balancer from Top Flite, which is shown
in Figure 3.42.

Figure 3.42 Magnetic propeller balancer.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 65

The propeller is mounted on a steel rod that is effectively suspended between two very
strong magnets. One end of the rod contacts a magnet, while there is a 1∕32-in (0.1-cm) gap
between the other rod end and the other magnet. You can barely see this gap on the left side
of the rod in the figure. This method of suspending the rod is practically free of friction and
allows the propeller to swing freely so that the heavier side always swings down. I very (and
I mean very) lightly sanded the back side off the propeller’s heavy side until the propeller no
longer had a heavy side. I took the propeller off the balancer, sanded a little bit, and then put
the balancer back in until it no longer rotated downward. This is a tedious process but well
worth the effort.

There are two different types of slow-flyer propeller blades in the Elev-8 Electronics Kit:
counterclockwise, (CCW, marked 1045) and clockwise (CW, marked 1045R). The correct type
of blade must be used on each motor for the Elev-8 to fly. See Figure 3.43 for label location;
the blades are rounded side up.

1. Disconnect the battery from the power harness.
2. Refer to Figure 3.44 for the correct placement of each blade.
3. Referring to Figure 3.45, connect each blade to its motor . The blade (item 2) should

be mounted rounded-side-up, seated on a cone lock (item 3) over a collet (item 4).
4. Finger-tighten the propeller nut (item 1), and then use an Allen wrench to tighten it

¼ turn more.

Mounting the Battery
The battery you select to be used with your Elev-8 must be mounted securely to the
quadcopter. Two Velcro™ straps shown in Figure 3.46 are provided with the kit with
the intention that they be used to fasten the battery to the bottom side of the bottom chassis
plate.

The straps should be threaded through any convenient chassis to secure the battery to
the plate. However, existing power cables may interfere with a tight strapping especially if
the power-distribution board is already mounted. My solution is to use a battery mount
plate that is raised above the bottom chassis plate, using ½-in (1.3-cm) nylon spacers. Figure
3.47 is a construction diagram for the Lexan™ battery mount plate.

The battery mount plate is secured to the bottom chassis plate using two flat 6-32 1-in
(2.5-cm) machine screws with matching nuts. Countersinking the screw holes in the Lexan™

Figure 3.43 Propeller type identification.

 66 B u i l d Y o u r O w n Q u a d c o p t e r

plate ensures that the battery will lie flat on the mount plate. Figure 3.48 shows the
installation of a completed battery mount plate without the battery so that you can clearly
see the mounts I used and their placement on the bottom chassis plate. Now you can strap
the battery to the mount plate very easily without any interference from other components
or wiring.

The following paragraph is the end of the package instructions.

Figure 3.45 Propeller assembly diagram.

Figure 3.44 Propeller placement.

 C h a p t e r 3 : B u i l d i n g t h e E l e v - 8 67

Congratulations! Your assembled Elev-8 Quadcopter is ready to fly. For a “First Flight” video
and troubleshooting tips, see the ELEV-8 Quadcopter product page; go to www.parallax.com and
search for “80000.”

However, I have a few more comments on the build before the chapter finishes.

A Few More Comments
You should now be in possession of a fully functioning Elev-8 quadcopter. However, I would
urge you not to fly just yet because there are still some important modifications that should

Figure 3.46 Velcro™ mounting straps.

Figure 3.47 Lexan™ battery mount plate construction diagram.

http://www.parallax.com

 68 B u i l d Y o u r O w n Q u a d c o p t e r

be done. It would also help you to read the material in the following chapters to expand your
knowledge of operating and modifying the quadcopter system.

I also feel strongly that you should incorporate the “kill switch” functionality discussed
in Chapter 10, which will enable you to instantly disable the quadcopter in the unlikely
event it becomes uncontrollable and is heading for a person or property. It is much better to
drop the quadcopter out of the sky then to seriously harm a person or cause significant
property damage.

Figure 3.48 Completed battery mount plate without battery.

chapter 4
Programming the
Parallax Propeller

Chip

Introduction
The Parallax Propeller chip that was introduced in Chapter 1 will be discussed in this chapter
from hardware and software perspectives. I will also refer to the chip as the Prop from now
on for brevity’s sake.

The Prop was developed by Parallax engineers solely for an extended project that started
in the late 1990s and ran to its market introduction in 2006. It is still the only available
multicore processor designed specifically for the technical/hobbyist market. Intel and AMD
multicore processors are distinctly different technologies designed for PC and server
applications. The Prop also has a much lower clock speed than Intel processors, which is not
an issue because it serves a very different purpose than the Intel/AMD multicores do. Props
are also very inexpensive, typically less than $10 USD, making them ideal for experimentation
and prototyping. First, I will describe the Prop’s unique architecture before going on to cover
the software and programming details.

Prop Architecture
In Figure 4.1 is the Prop P8X32X block diagram showing the eight separate cores along with
other key elements.

One of the first things that you might have noticed is that the cores are called cogs in the
Prop diagram. Each cog is an independent processing element with its own 2-kB memory.
The Prop also has 32-bit data and address busses, which means the “word” size is also
32 bits. There are 32 general-purpose input/output (GPIO) pins that each cog can access. These
are shared GPIO pins; however, some or all may be dedicated to a specific cog or group of
cogs if you want. A GPIO pin so dedicated is also referred to as being mutually exclusive
indicating that the pin is being controlled by a designated cog.

All the cogs communicate with a hub that contains a common or shared 64-kB memory
that is divided as 32 kB of RAM and 32 kB of ROM. The hub also contains configuration,
power management, reset, and clock circuits.

The clock circuits are quite flexible and may use either an internal resistor-capacitor (RC)
oscillator or a crystal-controlled oscillator, which in turn requires an external crystal. Most
Prop boards that I have used operate with a crystal oscillator because it provides higher

69

70

Figure 4.1 Prop block diagram.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 71

speed, better frequency stability, and better precision of the clock signal than the built-in
internal RC oscillator does. In addition, the applications discussed later in this chapter
require precise timing, which necessitates the use of the crystal-controlled oscillator.

The Prop chip also has a phase-locked loop (PLL) circuit that is used only in conjunction
with the crystal oscillator. The PLL circuit can multiply the external crystal resonant
frequency in steps of 1×, 2×, 4×, 8× or 16×. It is very common to have a Prop board equipped
with a 5-MHz crystal used with the 16× PLL multiplier to create an 80-MHz Prop clock
frequency. This does not quite match the 2.4- to 3.0-GHz range of Intel processors, but it does
not need to in order to meet the needs of the Prop embedded applications.

The Prop may also be thought of as a microcontroller because of the GPIO pins and
because each cog contains two versatile counters that may be configured in different ways to
suit an application. Every cog also has its own video generator circuit that both improves
display performance and increases program display functionality.

The hub and cogs interface in a round-robin fashion, as may be seen in Figure 4.1. Each
cog has a time slice in which to access the common 32-kB RAM memory. The hub-memory
access time is set to be 50% of the system-clock speed, which means a 40-MHz access rate for
an 80-MHz clock rate. Cogs are also rated at a nominal 20 million instructions per second
(MIPS) when operating at the 80-MHz clock speed. The MIPS rating is a result of an average
Prop instruction taking four clock cycles to complete. The 40-MHz round-robin hub access
speed means that data transfers between cogs and the shared hub memory are not constrained
or limited.

The 32-kB hub memory ROM is used to store common data tables as well as the character
generator set that each cog video generator can utilize to display programmed video output.
Sharing a common character data table frees up the individual cog memory for its own
program. 8 kB of hub ROM is also reserved for the Spin interpreter that converts source-level
Spin code into executable native instructions or tokens. A space-optimized copy of the Spin
interpreter is put into an individual cog's memory, thus enabling the cog to perform real-
time processing of the Spin tokens designated to run in that cog. The Spin language is
discussed in detail below in the programming section.

Note: You should realize that no code is ever executed from hub memory; all code that is run in a
Prop chip is executed by the cogs.

The Prop is manufactured in several physical packages including a 44-pin low profile
quad flat package (LQFP) surface-mount configuration that has 0.8-mm pin spacing. There is
also a 44-pin quad flat no-leads (QFN) carrier format, and finally, a 40 dual inline package (DIP)
suitable for solderless breadboard prototyping. I used the Parallax Propeller Board of
Education (BOE) shown in Figure 4.2 to develop and test the software used for the auxiliary
functions for the Elev-8 quadcopter.

The BOE has an LQFP-mounted Prop chip that is connected to many different peripherals,
which allows for rapid and convenient Prop software development. This is certainly true for
the servo-motor test application discussed in Chapter 5. There are a series of servo ports
located at the top right of Figure 4.3, which shows an annotated BOE photo.

There is also an external 64-kB EEPROM installed on the BOE that enables you to load
and store programs in a nontransient state, which means that the programs remains in the
EEPROM even if the power is shut off. Programs stored in RAM are considered transient
because they disappear once the power is removed. The BOE board supports the Prop
firmware feature whereby a program stored in EEPROM will automatically be copied into
the Prop RAM and then executed once the power is applied. Please be aware that there is a

 72 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 4.2 Parallax Propeller Board of Education (BOE).

Figure 4.3 Annotated BOE.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 73

short delay once power is applied to the BOE, since it takes 1.5 seconds to copy the 32-kB
ROM image into the 32-kB RAM memory.

Just in case you were wondering, user programs cannot be loaded into the Prop chip’s
internal 32-kB ROM memory. Doing so would overwrite and destroy the Prop’s firmware,
essentially eliminating the Spin interpreter and critical data storage tables—in effect,
“bricking” your Prop chip.

Prop Software
Until recently, the Prop has been programmed by using the Spin language and the Propeller
Assembly Language (PASM). Now, the C Language has been added to the available
programming tools that support the Prop. I will focus initially on Spin, since it is the primary
language to use when programming the Prop. I will discuss PASM and C in Chapter 5.

Spin Language
The Spin Language is one that I refer to as an object-oriented (OO) hybrid language, meaning
that it uses many of the features of a full blown OO language, such as Java or C++, while
directly dealing with the constraints and limitations inherent in a real-time programming
environment. For instance, the Spin language does not support some basic OO functionality,
such as creating and destroying dynamic objects. Spin’s underlying reliance on the Prop
chip’s functionality precludes supporting this basic OO feature. This does not mean that
Spin is not a highly useful OO tool; it just means that the normal programming approach
must be altered to reflect the Prop’s architecture. The Spin language designers recognized
that not all OO programming paradigms could be realistically implemented in a real-time,
parallel-processing environment. The Spin compiler is an extremely well-designed software
development tool that enables you to create true parallel-processing programs that also
efficiently execute in a real-time environment. There are other parallel-development tools
available, but none that I know of that are so user friendly and make it so easy to develop
practical program solutions.

It would be naïve of me and a disservice to you to attempt to thoroughly cover OO
programming fundamentals in this chapter. I would urge you to learn some basic imperative
programming concepts, and at least, go through an introduction to OO programming
principles. It will be difficult for you to fully comprehend how the example Prop programs
function without some programming background. If you lack a good foundation, you will
find it difficult to modify the examples to suit your own needs. The authors of the Parallax
Propeller User's Manual also make the same assumption that the reader should have some
OO background. With this disclaimer stated, I recommend that everyone download and
read the latest Propeller User's Manual. Readers who have some OO development experience
will still need to read the important information within the manual. Writing Prop software
is really quite different from developing normal OO software because you have to consider
the presence of parallel-processing cogs and a real-time operating environment. Given these
issues, I will include some detailed explanations in the following discussions in order to
clarify the Spin programming statements.

Propeller Spin Tool
The Propeller Spin Tool (PST) is a free tool provided by Parallax, which allows you to create,
load, and execute software on any Prop-based development board or functioning prototype
Prop circuit. As mentioned earlier in the chapter, I used the Prop BOE for software

 74 B u i l d Y o u r O w n Q u a d c o p t e r

development. The BOE is set up to communicate with a Win 7 laptop running PST version
1.3.2. There should be a USB comm port driver automatically loaded to allow your PC to
detect and communicate with whatever Prop development board you choose to use. Clicking
on the Run drop-down menu will reveal an Identify Hardware choice. Clicking on this will
pop up an Information Dialog box, as shown in Figure 4.4.

I decided to go through some of the tutorials that are carefully detailed in the Propeller
User’s Manual. I will start specifically with the Blinker1 program. I did have to slightly modify
the original program that is shown in the manual in order to accommodate the available
GPIO pins on the BOE. Figure 4.5 is a screenshot of the modified Blinker1 program.

This figure shows the PST development screen that Parallax calls its Integrated Explorer.
The Explorer’s central portion is an editor area where the Spin code is input and modified.
There are some two pane areas on the left side of the Explorer that show the current directory
along with the files contained in that directory. I deliberately selected the _Demos directory,
which is part of the Propeller Library. You can easily see a variety of Spin programs that are
available in the file-listing pane. Incidentally, the Propeller Library is part of the PST
download.

Figure 4.4 Information Dialog box showing the active USB comm port.

Figure 4.5 Blinker1 Spin program.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 75

The Blinker1 program shown in the editor portion of Figure 4.5 contains three sections:

1. Comments/Documentation
2. OBJ
3. PUB

The first section, Comments/Documentation, contains the program name along with
any comments and/or explanations of what the program is supposed to do and how it
works. I strongly believe that comments are a very important part of any program—even
those that you write only for your own use. It is easy to imagine that you could create an
uncommented program, put it aside, return to it six months later, and then not have any idea
as to the function of the program. I really feel so strongly about this subject that I will not
even grade any of my students’ programs unless they contain comments.

The PST provides several means for adding comments to the source code. These are
shown in Table 4.1. The PST uses document comment symbols to determine if a comment or
a set of comments are to be shown in the Documentation View. Figure 4.6 is the Documentation
View of the Blinker1 program.

Comment Symbology Purpose

{ …comments… } Multiline code comments (one curly brace pair)

{{ …comments… }} Multiline documentation comments (two curly brace pairs)

‘ …comments… Single-line code comment (one apostrophe)

‘’ …comments… Multiline documentation comments (two apostrophes)

Table 4.1 PST Comment and Documentation Symbols

Figure 4.6 Blinker1 documentation view.

 76 B u i l d Y o u r O w n Q u a d c o p t e r

There are four separate views that may be selected in the PST by clicking on any of the
radio buttons located at the top of the Editor pane. You should notice that the Full Source
button is selected in Figure 4.5, while the Documentation button is selected in Figure 4.6.
Condensed and Summary are the two other views that are available, but they generate very
limited information, as compared to the Full Source or Documentation views for this small
program. I would imagine that Condensed or Summary views might be useful for very large
projects containing many objects with much more corresponding source code.

The PST also contains a comprehensive character set that includes the schematic
fragments that I used to create the LED schematics shown in the top comment section of the
source code. Figure 4.7 is a screenshot of the Character Chart with the Horizontal Line
symbol selected.

To insert schematic characters, first position the Editor prompt at the location where you
desire them to be inserted and then click on Help followed by clicking on Show Character
Chart. Next, by clicking on a character in the chart, you will place that character at the
location of the Editor’s prompt that you had previously set. It just takes a little practice to
develop your skill at creating small-scale schematics with the PST Character Chart.

The OBJ section in the Blinker1 program is where additional objects that are needed to
support the program are declared. Blinker1 is also referred to as a Top Object, as it contains
the start of program execution and also has any additional objects referenced within its OBJ
section. Spin programs can have only one Top Object but may contain zero to many
supporting objects. The OBJ section is how Spin establishes the object hierarchy. Other non-
top objects may have their own OBJ sections to further reference more objects. The PST
keeps track of this hierarchy and will issue an error if an object is missing. Referring back to
Blinker1’s OBJ section, you can see that it has one line in the section:

LED : “Output”

Figure 4.7 PST character chart.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 77

The referenced object file name is formally Output.spin; however, the .spin suffix is
assumed and does not need to be in the instruction, nor will it be used any further in my
discussion. LED is the internal or logical reference by which the Blinker1 program will refer
to the Output program. You might think of LED as a nickname in much the same way as you
normally refer to friends and family by their familiar names instead of their formal names.

The last section in the Blinker1 Editor area is named PUB (which is short for PUBLIC).
There is also another identifier next to PUB, which in this case is called Main. Main is the
name of a method, which is something that performs an action. It can be thought of as a
function or subroutine if that fits your experience. The method named Main, being the first
one in the program listing, is where the Spin program will start its execution. Note that by
convention only one Main method should be in a Spin program and that it is ordinarily
located in the Top Object, which is the Blinker1 program. Naming the starting method Main
is not mandatory but it does make reading Spin code much easier. I will discuss two
statements in the Main method separately, but you must first realize that neither one will
make much sense until you read the section below on the Output program. For right now,
just continue reading, and I assure you that the material will become clearer as you finish
reading all of it. Another point to remember is that several PUB sections may be in a Spin
program and that each one contains its own method. How they are sequenced usually makes
no difference except that if the Main method exists in a file, it should be first.

The first program instruction in the Blinker1’s Main method is:

LED.Start(14, 6_000_000, 20)

The instruction is in an OO structure in which the reference name LED is to the left of the ‘.’,
which in OO terminology is known as the “member of” operator. I will simply refer to this
term as “dot” from now on. The name “Start”, which is directly to the right of the dot
refers to a method named Start that is located and defined in the Output file. Remember that
LED is the local name or reference to Output. The three values between the parentheses
following the Start method name are arguments that are needed by Start to correctly perform
its function. Right now, I will ignore their meaning, since it is not important for this particular
discussion, but I will address it in the Output program discussion. Paraphrasing this
instruction in OO terms would lead to the following:

Execute the Start method, which is a member of the Output object, with these three
specific data values.

The next instruction in the Main method is:

LED.Toggle(15, 4_000_000, 40)

By using the same logic as above, this instruction would translate to:

Execute the Toggle method, which is a member of the Output object, with these three
specific data values.

It is now time to examine the Output file Spin code so that you can fully understand
what is happening with the foregoing instructions. Figure 4.8 is a screenshot of Output’s Full
Source code view. You may notice immediately that it does not contain nearly as much
documentation and as many comments as does the Blinker1 code; nor should it, since it is a

 78 B u i l d Y o u r O w n Q u a d c o p t e r

component object. It does, however, contain a new section named VAR. The instruction
contained in this section is:

long Stack[9]

This instruction reserves nine long data words in the hub’s shared memory. Recall that
the standard word for the Prop chip is 32 bits in length, which is equivalent to four bytes.
Thus, nine longs reserves 36 bytes of space in the common hub RAM. This memory space is
required to support the creation for a new cog’s stack operating area. Without going into a
detailed explanation, I will define a stack as simply a memory area in which an operating
cog may store temporary data and an area where the Prop’s firmware can logically access
the cog as needed. A new cog is created when the Top Object, Blinker1, calls Output’s Start
method, which is the reason for reserving stack space.

Output also contains two public methods that I referred to earlier in the Blinker1 code
discussion. The first method is named Start, and the second method is named Toggle. It is
standard practice in Spin programming to have a Start method in a component object so that
the Top Object may “kick it off” in a known and consistent manner. Output’s Start method
contains only one complex instruction, which causes a new cog to run that in turn executes
the Toggle method. The Toggle method is Output’s other public method. This new cog is
automatically selected by the Spin interpreter from the first available cog, which in this case
is cog #1. Cog #0 is always selected to start executing the Top Object code, and therefore, is
already busy. The heart of the Output object is really the Toggle method. I have repeated the
source code below so I could amplify the comments already contained in the code.

PUB Toggle(Pin, Delay, Count)
{{Toggle Pin, Count times with Delay clock cycles in between.}}
 dira[Pin]~~ ‘ Set I/O pin to output direction
 repeat Count ‘ Repeat for Count iterations
 !outa[Pin] ‘ Toggle I/O Pin
 waitcnt(Delay + cnt) ‘ Wait for Delay cycles

Figure 4.8 Output Full Source view.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 79

The first line of the code is also known as the method signature. It contains the public
name of the method, which in this case, is Toggle, followed by any arguments it requires to
function properly. There are three arguments—namely, Pin, Delay, and Count. Pin is an
integer that represents the number of the GPIO pin that controls the LED. In our example,
pins 14 and 15 are being used. Thus, it becomes immediately obvious that the Toggle method
must be called twice to accommodate the two different pins.

The next argument is named Delay, and it is also an integer that represents a time delay
in terms of actual clock cycles. There are two different delays used in the Blinker1 program,
one with a 6_000_000 value and the other with a 4_000_000 value. I am sure you could not
help but notice that underscores are used in lieu of commas for delimiters. I believe they are
optional, but using underscores does help in avoiding the entry of an incorrect number of
zeros. The actual delay time is dependent on the real Prop’s operating clock speed. The
4_000_000 delay would represent an actual delay of 4∕12 seconds for a 12-MHz clock, which is
the default rate used in the Spin interpreter, or equivalently, 1∕3 of a second, which also equals
333.3 ms. Just remember: the bigger the number, the longer the delay.

The last argument is the Count, which represents the number of iterations or loops
that the method performs before stopping. This sets the number of blinks, while Delay sets
how long each blink lasts. The remaining instructions in the Toggle method are explained in
Table 4.2.

I would like to go back to the Blinker1 code now that I have covered the Output source
code. The two calls in Blinker1 should now make a little more sense to you. The first one is:

LED.Start(14, 6_000_000, 20)

The Start method in Output is called with pin 14 as the output, 6_000_000 as the delay in
clock cycles, and 20 as the number of repeats or loops. Recall that Start also creates a new cog
in which the Toggle method is executed.

The other Blinker1 call is:

LED.Toggle(15, 4_000_000, 40)

Instruction Explanation

dira[Pin]~~ Sets the GPIO pin whose value is Pin to be an output or
source.

repeat Count The beginning of a loop that repeats for Count value times.

 !outa[Pin] Toggles the value output from the pin, for example, 0 to 1 to 0
to 1 . . . and so on.
Note that the instruction is indented from the repeat
instruction. This is how Spin determines which instructions
are contained in the loop.

 waitcnt(Delay+cnt) This is the loop end because it is the last indented
instruction. waitcnt delays Prop operations for the number
of clock cycles in the parentheses. cnt is a global variable
representing the current clock cycle number. It is not
important per se since the Delay value is added to it, and
the whole delay is really based upon the resulting amount.

Table 4.2 Toggle Spin Instructions

 80 B u i l d Y o u r O w n Q u a d c o p t e r

Here the Toggle method in Output is called directly with pin 15 as the output, 4_000_000
as the delay, and 40 as the number of loops. No new cog is created when Toggle is directly
called so this instruction uses the existing cog that was started with Blinker1 or cog #0.

The complete BOE wired for the Blinker1 program is shown in Figure 4.9. It is quite
simple—using only two LEDs, two resistors, and some jumper wires.

Porting to the Propeller QuickStart Board
I next wanted to demonstrate how easy it is to load the Blinker1 program onto a different
Parallax development board. The board I selected was the QuickStart board, which is shown
in Figure 4.10.

The QuickStart is a very low-cost Prop development board. It still comes equipped with
a USB-to-Serial interface chip that makes it plug compatible with the Parallax PST. All you
have to do is connect the QuickStart board to the PC running the PST software and load the
Blinker1 program. The USB comm port on the QuickStart board should be automatically
identified by the PC, which will allow you to download the program into the board’s
EEPROM. Figure 4.11 shows the board configured with a prototype solderless breadboard
along with the LEDs connected in the same way as they were with the BOE.

I ran the Blinker1 program on the QuickStart board. In Figure 4.11, you can see that the
board was powered by a 9-V battery. The program executed exactly the same as it did on
the BOE.

Now that I have shown you how to develop some simple blinking programs, I would
like to delve into some intricate Prop details.

Figure 4.9 BOE wired for the Blinker1 program.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 81

Figure 4.10 Parallax Propeller QuickStart board.

Figure 4.11 QuickStart prototype setup.

 82 B u i l d Y o u r O w n Q u a d c o p t e r

Clock Timing
This section is concerned with timing from both delay and duration aspects. Timing is a key
feature in the real-time operations that the Prop performs. The duration of the LED blink in
the Blinker1 program is based on the passage of a predesignated number of clock cycles that
are assigned in the Delay variable. The total numbers of blinks are assigned by the Count
variable, which also directly affects the total elapsed time that a specific LED blinks. The key
instruction that implements the LED blink duration is:

waitcnt(Delay + cnt)

This instruction is within a loop in the Output’s Toggle method. The number of loop
iterations is controlled by the Count variable; hence, the total elapsed time for a blinking
event is approximately computed by this formula:

Total blink time = (Delay time) * Count

Notice that I used the word approximately in describing the formula’s accuracy because
there is an extra brief delay from what is called overhead processing that involves executing
loop instructions other than the actual delay instruction. This overhead, while typically very
small, must be accounted for in extremely precise timing applications.

I conducted a very informal experiment to verify that the “Total blink time” formula was
somewhat accurate. I simply timed the blinking duration of the LED controlled by pin 15.
I did a set of four timing measurements and came up with a result of 13.4 seconds for the
average total duration. But how does this compare with the theoretical time duration? To
answer this question I had to compute the expected delay, as shown below:

Parameters: Delay = 4,000,000
 Count = 40
Delay in seconds = 4,000,000 / 12,000,000 = 0.3333 seconds
 Total delay = 0.3333 * 40 = 13.33 seconds
 Measured = 13.40
 Calculated = 13.33

Less than 0.1 seconds between measured and calculated results isn’t too bad for a crude
experiment. However, you may be wondering where the 12,000,000 value came from in the
“Delay in seconds” calculation. I will discuss this in the next section.

RC Oscillator Operations
Remember that at the beginning of this chapter I explained that the Prop chip had a variety
of clock operational settings, including using an internal RC oscillator. It turns out that if
you write a Spin program without specifying a particular clock configuration, the Spin
compiler will automatically invoke what is called the “fast” RC oscillator (RCFAST) mode
that runs at 12 MHz—this is where the 12,000,000 value comes from. This mode of operation
is fine for initial prototyping and any non-time-critical application but is definitely not
recommended for precision timing operations for all the reasons I have previously
discussed. You should also note that the 12-MHz rating is what Parallax terms a nominal
rating because it could range from 8 to 20 MHz depending upon a number of factors. I will

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 83

soon discuss some programming approaches to mitigate the potentially adverse effects for
this clock cycle variability.

There is one other RC clock mode that may be of some interest especially for extremely
low-power applications. This mode is the slow RC clock mode in which the clock rate is only
20,000 Hz, which is almost 1000 times slower than the default RCFAST mode. Figure 4.12
shows the PST Full Source code view for the program named SlowBlinker1 that demonstrates
this slow-speed operation. The Delay numbers have also been significantly reduced by a
factor of 1000 due to the long times caused by using a slow clock speed.

The timing experiment was repeated for pin 15 and revealed a similar time of 13.36
seconds, which makes perfect sense, since the clock rate and delay were both scaled down
by the same factor of 1000. A review of the SlowBlinker1 source code reveals that there is
a new section named CON (which is short for CONSTANT). There is only one statement in
the CON section:

_CLKMODE = RCSLOW

The name _CLKMODE is a built-in constant that the Spin software uses to set the desired
clock mode. The name RCSLOW is simply equivalent to an integer that represents the clock
mode. It does not matter what the actual number value is because Spin is programmed to
respond to a given number to set a specific clock mode. Using this approach prevents an
unfortunate programming practice known as magic numbers. To make this a bit clearer, let
us suppose that the actual number for setting a slow RC clock mode is 8. Using this
information would change the above clock mode expression to:

_CLKMODE = 8

This expression by itself makes no sense without the additional information that the
number 8 actually represents the slow RC clock mode. That is why using 8 in the above

Figure 4.12 SlowBlinker1, Full Source view.

 84 B u i l d Y o u r O w n Q u a d c o p t e r

expression would be referred to as a “magic number”—it would take an act of magic to
figure out what it represents. The programming practice that you should follow is to avoid
using a magic number if at all possible, and if you do use one, ensure that you add a comment
regarding what the number represents.

The RCSLOW clock mode is nominally rated for 20 kHz, but as was the case with the
RCFAST mode, it has a potentially wide variation. This range goes from 13 kHz to 33 kHz,
which would cause some serious issues if the time in your code was dependent on a preset
clock cycle. In the following section, I will discuss how using a crystal oscillator can vastly
improve the clock-cycle precision.

Crystal Oscillator Operations
Using the crystal oscillator is a simple matter of changing the clock mode. In this case, it
involves two statements that need to be put into the CON section of the program Editor. The
statements for a 5 MHz external crystal would be:

CON
 _CLKMODE = XTAL1
 _XINFREQ = 5_000_000

In this example, XTAL1 sets the clock mode for a crystal oscillator, and _XINFREQ
specifies the external crystal resonant frequency that is connected to the X1 Prop pin. Recall
that there is also a PLL frequency multiplier that may be used with an external crystal. In this
example, no multiplicative factor is specified so the Prop clock frequency will be 5 MHz, the
same as the external crystal. The next example shows you how to use a PLL multiplication
factor.

CON
 _CLKMODE = XTAL1 + PLL16X
 _XINFREQ = 5_000_000

This example is almost the same as the one above, except for the addition of the PLL
clock-multiplier specification after the XTAL1 mode specifier. The multiplier specification is
simply “ + PLL16X,” which means multiply the external crystal frequency by 16. This means
that a 5 MHz external crystal would create an 80 MHz clock frequency.

I next modified the SlowBlinker1 code to use the high-speed crystal oscillator with a
16 times PLL multiplier factor. I named this revised program FastBlinker1, and Figure 4.13 is
a screenshot of the Full Source view. I also restored the delays to their original values from
the scaled-down values used in the SlowBlinker1 program.

This program ran considerably faster than the Blinker1 program, as you might expect.
I estimated that the pin 15 blinking operation would last approximately 2 seconds because
the clock speedup was a factor of 6.5, which is the ratio between 80 MHz and 12 MHz.
I calculated the 2-second result by dividing the 13-second operation for Blinker1 by 6.5. The
actual operation was indeed around 2 seconds, but it was very hard to determine because of
the additional time it takes to load the program from EEPROM into RAM.

Reducing Dependence on Absolute Clock-Cycle Times
In this section, I will show you how to get rid of the bothersome dependence on absolute
clock-cycle timing when trying to set delay and duration times within your program. By

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 85

following this approach, you will deal in units of milliseconds versus number of clock cycles,
which will eliminate the requirement that you know the actual system clock speed in order
to set actual delays and/or durations. I will demonstrate this approach by using a modified
version of FastBlinker1 that I renamed PreciseBlinker1. Figure 4.14 is a screenshot of the Full
Source view for PreciseBlinker1.

Figure 4.13 FastBlinker1 Full Source view.

Figure 4.14 PreciseBlinker1 Full Source view.

 86 B u i l d Y o u r O w n Q u a d c o p t e r

One difference between the PreciseBlinker1 program and the FastBlinker1 program is
that the statement _XINFREQ = 5_000_000 in the CON section has been removed, and the
statement _CLKFREQ = 80_000_000 has been inserted. This statement specifies to Spin
the desired clock frequency, which is then used to derive the corresponding _XINFREQ from
the _CLKMODE value and the PLL multiplier. You can only specify either _XINFREQ or _
CLKFREQ but not both, or Spin will return an error.

The next change is insertion of the statement oneMilliSec = _CLKFREQ/1000 . The
constant oneMilliSec now represents the total number of clock cycles that must pass in a
one-millisecond time interval. You no longer have to explicitly relate clock cycles to time;
just use the oneMilliSec constant.

The last change in PreciseBlinker1 affects how the Delay value is passed to the LED
object. In the Main section, both Delay values have been changed from 6_000_000 and
4_000_000 hard-coded cycle counts to 75 × oneMilliSec and 50 × oneMilliSec,
respectively. Now all you need do is focus on the desired time delay and not on counting
clock cycles. This makes for much more pleasant code development.

A few changes were also made to the Output Spin object. Figure 4.15 is a screenshot of
the Full Source view for that object, which I renamed as PreciseOutput to reflect the
functional changes.

Two changes were made in the Toggle method. The first captured the system counter’s
value just before the loop started. This value is stored in a local variable named Time that
must also now be declared in the Toggle’s signature or top line. You can see that it is added
after a vertical line delimiter. Time will hold a snapshot of the system counter value nearly
at the instant the loop begins. The second change is in the loop in which the statement
waitcnt(Time += Delay) is constantly evaluated until it is True; then the loop is ended.
Recall that Delay’s value is the total number of clock cycles that you desired to delay but
expressed as a number of milliseconds times the number of clock cycles per millisecond. The
“+=” expression in the waitcnt instruction is an “add to assignment” operator that instructs
Spin to add the Delay value to the current Time value and store it back as a new Time
value. It could also have been written as “Time = Time + Delay”. This format however,
is a bit more compact.

Figure 4.15 PreciseOutput Full Source view.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 87

The PreciseBlinker1 program was downloaded into the BOE and run with exactly the
same results as happened with the FastBlinker1 program, but PreciseBlinker1 deals with
actual time rather than clock cycles.

I retested the PreciseBlinker1 program using a 40-MHz clock and got exactly the same
results as with the 80-MHz version. This is precisely what I expected, thus proving that
this approach makes dealing with delays and durations entirely independent of the actual
clock speed.

Up to this point, I have demonstrated programs that toggle various GPIO pins at a 50%
duty rate, which means that half the time they are on and the other half they are off. Viewing
such a signal on an oscilloscope would reveal what is known as a square wave. Figure 4.16
is a screen capture of the PreciseBlinker1 output from pin 15.

Notice that the "on-time" or high portion of the signal trace is exactly 50 ms, as expected
from the program. Of course, the "off-time" or low portion is also 50 ms, which makes the
total waveform duration equal to 100 ms, or equivalently, 10 Hz.

I have included a photo of the oscilloscope that I used to measure the waveform
for those readers who might be interested. Figure 4.17 shows a PicoScope model 3406B,
which is a high performance PC oscilloscope. This instrument requires a PC to show the
waveform because it has no organic display. The 3406B is a four-channel device capable of
measuring signals up to 200 MHz with exceptional accuracy. I would urge readers to check
out the Pico Technologies website to learn more about these highly capable and flexible
instruments. However, be forewarned that they are not cheap; as the old adage goes, you
get what you pay for. I am not disappointed in this instrument because it has performed
flawlessly and enabled me to measure and record all the detailed waveforms that are shown
in this book.

Figure 4.16 Oscilloscope real-time view of pin 15.

 88 B u i l d Y o u r O w n Q u a d c o p t e r

Pulse-width Modulation and Servo Example
This next example introduces pulse-width modulation (PWM) in which the pulse-on time is
much shorter than the total waveform period. The pulse-on time is normally based upon a
program input, while the total waveform period is kept constant. PWM is the technique
used to control servo motors and is central to the Elev-8 flight-control scheme.

The demonstration program and Top Object are named 1 Center Servos and are part of
the Parallax Learn Propeller Code tutorials. Two more component objects named Propeller
Board of Education and PropBOE Servos are also required to run the Top Object. Running
the Top Object creates a continuous waveform repeating at a 50-Hz rate with a pulse-on time
of 1.5 ms. Figure 4.18 is a screenshot of the waveform measured by the USB oscilloscope
connected to pin 14. The figure shows a 1.5-ms pulse that is repeating at 50 Hz, equivalent to
a 20-ms waveform period.

The very simple 1 Center Servos program is shown in Figure 4.19. Looking at the code
in the 1 Center Servos program shows that the author(s) was not terribly interested in
thoroughly commenting or documenting the code. This lack of comments is a shame because
it makes it hard for anyone using the code to understand how it is supposed to function.
Admittedly, it is a very small program, but it still should have more comments. Having said
that, I will proceed to discuss the program and show you how I made changes to demonstrate
the PWM function.

There is only one method named Go in the program, and this is where the program
starts executing. Yes, it should have been named Main, but as I mentioned earlier, it is a
convention not a mandatory requirement. The first statement in the Go method is:

system.Clock(80_000_000)

Figure 4.17 Picoscope Model 3406B USB oscilloscope.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 89

The Top Object is delegating clock configuration responsibilities to one of the component
objects referenced by the reference name system whose file name is Propeller Board of
Education. If you examine the source code for the Propeller Board of Education, you will
find nearly the same code that I used in the FastBlinker1 program to set the clock. This
delegation approach is useful, and it does minimize the code in the Top Object. It really boils
down to your approach to coding, especially if there are multiple Top Objects to be used in
a situation such as the Learning Tutorials where this code came from.

The next line in the Go method is:

servo.Set(14, 0)

Figure 4.18 PWM signal waveform with a 1.5-ms pulse width and 50-Hz rate.

Figure 4.19 1 Center Servos Full Source view.

 90 B u i l d Y o u r O w n Q u a d c o p t e r

The local reference name is servo, and it represents the Spin file named PropBOE Servos.
The Set method in this file controls the PWM waveform. The first argument is the GPIO pin,
which is 14 in this case, and the second number is an offset. The offset represents a number
that will range from −1000 to +1000. This offset can be thought of as a direct control of the
pulse width where a 0 offset would be a 1.5 ms pulse, a −1000 would be a 0.5-ms pulse, and
a +1000 would be a 2.5 ms pulse. Thus, the offset is really the number of microseconds that
you want the pulse to deviate from the central 1.5-ms value. Any integer in the range from
−1000 to +1000 will proportionally set the pulse width.

Most standard servos are designed to operate with this PWM technique. Sending a
2.5-ms pulse train to a servo designed to change angular position will cause it to rotate 90°
in a clockwise direction from the neutral position. Similarly, sending a 0.5-ms pulse train will
cause it to rotate 90° in a counterclockwise direction from the neutral position. Sending a
1.5-ms pulse train will keep the servo in its neutral position.

Sending the same type of pulses to a continuous rotation servo will cause angular
velocity changes in which a 2.5-ms pulse would be the maximum speed in a clockwise
direction, a 0.5-ms pulse would be the maximum speed in a counterclockwise direction, and
1.5 ms would be a speed of zero. Figure 4.20 shows a servo neutral positioning waveform
that has a 1.5-ms pulse width.

I next connected a Hitec model HS-311 standard servo to the pin 14 servo connector on
the BOE board. Figure 4.21 shows the BOE executing the 1 Center Servo program with the
neutral position waveform being output.

I placed a small white arrow on the servo yoke to indicate the servo’s neutral position,
which, as you can see, is pointing to the top of the figure. I then changed the offset from 0 to
+1000 and photographed the new servo position, as shown in Figure 4.22.

The servo has rotated 90° clockwise in response to the +1000 offset command placed in
the Set command. The controlling waveform with a 2.5-ms pulse-width waveform is shown
in Figure 4.23.

Figure 4.20 Servo neutral position waveform.

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 91

Figure 4.21 BOE controlling a Hitec servo in the neutral position.

Figure 4.22 BOE controlling a Hitec servo in the maximum clockwise position.

 92 B u i l d Y o u r O w n Q u a d c o p t e r

I tested the servo at other positions to confirm proper operation, but I will not take up
book space to show servo positioning or waveform figures. You can be assured that the
servo correctly responded to all the offset commands.

The PropBOE Servos Documentation View is available on this book's website www
.mhprofessional.com/quadcopter to illustrate the complexity of this object. It also provides
a guide for those readers who wish to experiment with the additional functions that are
present in the code but not used in the foregoing example. In the example, Top Object calls
only the Set method, which then calls the Start method, which in turn calls the Servos
method. The pin and offset values are defined in the Set call, while some basic waveform
parameters are defined in the Start method. The Start method also instantiates a new cog
that will execute the Servos method where real action happens. I have replicated the Servos
method code below, not so much to analyze it, but to show you how a real-time waveform
generator may be created using the Spin language.

PRI servos | t, i, ch
 t := cnt
 repeat
 i := -1
 repeat until i == 13
 repeat ch from 0 to 1
 if ++i =< _servoCnt
 outa[_pinList[i]]~
 dira[_pinList[i]]~~
 spr[CTR + ch] := (%000100 << 26) & $FFFFFF00 |
_pinList[i]
 spr[FRQ + ch] := spr[PHS + ch] := 1

Figure 4.23 Servo maximum clockwise position waveform.

http://www.mhprofessional.com/quadcopter
http://www.mhprofessional.com/quadcopter

 C h a p t e r 4 : P r o g r a m m i n g t h e P a r a l l a x P r o p e l l e r C h i p 93

 pulse[i] += ((_pulseList[i] - pulse[i]) #> -_stepList[i]
<# _stepList[i])
 if ((_enableMask >> i) & 1)
 spr[PHS + ch] := -((pulse[i] #> -1000 <# 1000) * us +
center)
 waitcnt(t += frame)
 repeat until not lockset(lockID)
 longmove(@_pinlist, @pinList, 48)
 lockclr(lockID)
 waitcnt(t += cycleEnd)

You should first notice that the method begins with a PRI identifier, which is short for
PRIVATE. This means that the Servos method is available only to other methods within the
PropBOE Servos object and no other external object can call it. This restriction helps promote
an important OO principle known as encapsulation. Objects should not reveal too much
information on how they work internally so that unintentional changes are minimized.

The variable array _pinList[i] is set up to handle multiple servos operating
simultaneously. This is a key advantage for the parallel processing that the Prop chip
supports. It definitely is a great asset in this application.

There are two key statements in the above code that begin with the identifier spr. This is
a Spin instruction that is short for Special Purpose Register (SPR), which allows you to
indirectly access some specialized registers that are present in each cog. A register, for those
unfamiliar with the term, is a named storage area where data can be read or written. I have
included a list of a cog’s SPRs taken from the Propeller User's Manual in Figure 4.24 because
I think that you should be aware of them. They are an extremely valuable asset used in
creating code that executes quickly and efficiently.

Figure 4.24 Cog Special Purpose Registers (SPR).

 94 B u i l d Y o u r O w n Q u a d c o p t e r

I would like to point out that the above code is so efficient that it can replace the need to
use assembly language code, which is ordinarily used to achieve the performance necessary
for this application. However, do not be dismayed. I will discuss assembly language in
Chapter 5, since it supports the demonstration program used to control an Elev-8 test motor.

Summary
The chapter began with an introduction to the Parallax Propeller chip’s unique architecture.
The cores or cogs were shown to be highly flexible computing elements capable of performing
parallel tasks to efficiently execute application instructions. I also discussed the hub that
coordinates cog activity and the highly flexible clock circuits that support the Prop chip.

The Propeller Spin Tool (PST) discussion included a demonstration of how easy it was to
create, load, and execute programs using the PST and a Prop development board.
I showed you the Propeller Board of Education (BOE) that I used for software development.
It includes a USB-to-serial interface chip that makes connecting the BOE to a PC running the
PST, an effortless task.

I next went through a series of LED blinker programs that demonstrated basic Spin
programming as well as some basic object-oriented (OO) techniques. The PST makes it very
easy to get started with Spin programming. Of course, continued study and practice is the
only way to develop solid software development skills.

One of the LED blinker programs was next transferred to a Parallax QuickStart
development board. I did this to show that transferring a Spin program developed on the
BOE to another Parallax development board raised no issues whatsoever.

Next came a clock-timing discussion in which I went through the various system clock
modes and explained the pros and cons for each one. I recommended that the external
crystal-controlled oscillator be used for your application program development. This clock
mode is accurate, fast, and readily available on most of the Parallax Prop development
boards.

I next showed you how to use actual time values in lieu of clock cycles when creating
your programs. Using time values expressed in milliseconds is far superior to using clock
cycles. This technique makes time values used in your program independent of the actual
running system clock.

A comprehensive pulse-width modulation (PWM) discussion followed the clock tutorial.
This PWM introduction lays the foundation for a proper understanding of the technology
integral to servo operation. Servo technology is used extensively in radio-controlled flight
systems as well as for the Elev-8 flight system. I used several programs to demonstrate how
basic servo-control algorithms function.

The chapter concluded with an introduction to the cog special purpose registers (SPR).
These registers are the key to creating efficient and very fast application programs.

The next chapter examines some of the Elev-8 critical components, including motors,
ESCs, and propellers (the ones that whirl, not the chip kind).

chapter 5
Quadcopter Propulsors

Introduction
As the title indicates, this chapter’s discussion will encompass the three elements that
produce the thrust that propels the quadcopter into the air: the propeller, the motor, and the
electronic speed controller (ESC). Each one depends on the other two; and without each doing
its part, there will be no thrust created, and the quadcopter will remain stationary on the
ground. Each element will be discussed separately; however, I will try to show how they are
each tied to one another and will identify their limitations and the constraints they impose
on each other.

The chapter will also present a demonstration of two programs that will allow you to
further explore your current propellers and motor/ESC combinations, along with possible
future propeller upgrades.

I will begin by discussing the motor, an element critical to quadcopter performance and
one most people are familiar with.

Motors
Direct current (DC) motors are nearly universally used in R/C aircraft, helicopters, and
multirotor craft. The two main DC motor types are brushed (BDC) and brushless (BLDC).
Brushless motors are preferred for use in quadcopters because they do not use carbon
brushes, which makes them much easier to maintain. They also rotate at very high speeds,
as compared to brushed motors, and produce less electrical noise. One of the Elev-8 BLDC
motors, a model A2212/13T 1000KV, is shown in Figure 5.1.

The 1000KV in the model name means that the motor is designed to rotate at 1000 r/min
per volt applied to the motor. Thus, an ESC that is powered by a fully charged three-cell
LiPo battery producing over 12 volts could theoretically rotate the motor at a maximum of
12,000 r/min. In reality, the maximum rotation is about 7000 r/min for the Elev-8, since that
is about as fast as the Slo-Flyer propellers can efficiently rotate. In addition, a motor turning
a propeller load will typically have an approximately 600-r/min-per-volt rating, which
equates nicely with the maximum 7000 r/min at roughly a 12-V supply voltage.

BLDCs used in the Elev-8 are also unique in that the rotors are on the motor exterior,
while the stators are fixed on the inside of the motor. This type of motor is also known as an

95

 96 B u i l d Y o u r O w n Q u a d c o p t e r

outrunner because the rotors are on the motor’s exterior. Naturally, traditional rotors that are
inside the motor casing are known as inrunners. Outrunner motors have rotors that use
permanent magnets (PMs), as can be seen in Figure 5.2.

The PMs used in the Elev-8 motors are made of Neodym, which has the chemical
nomenclature of NdFeB. The elements that make up Neodym are neodymium (Nd), iron
(Fe), and boron (B). Neodymium is classified as a rare earth element and is the key magnet
constituent. It has a very high magnetic permanence, which means it can be permanently
magnetized and maintain a very strong field.

There are 14 PM bars mounted on the inside of the rotor, as may be seen in Figure 5.2.
The magnets are mounted with alternating north/south magnetic field orientations in order
to match the rotating-stator electromagnetic field.

Figure 5.1 Elev-8 BLDC motor A2212/13T 1000KV.

Figure 5.2 BLDC 14-pole PM rotor.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 97

The other main motor part is the stator, which is made up of wire-wound coils that wrap
around an iron core. Figure 5.3 is a photo of a 12-pole stator similar to the ones used in the
Elev-8 motors.

It is important to note that there are 14 poles on the rotor and 12 poles on the stator. The
difference in pole numbers is crucial to starting and maintaining motor rotations. The rotor
would otherwise lock up and not rotate if the number of poles on the rotor and stator were
equal. Figure 5.4 is an end view of an assembled A2212/13T motor that clearly shows the
displacement between rotor and stator poles that ensures the motor will rotate.

Figure 5.3 BLDC 12-pole wire-wound stator.

Figure 5.4 End view of the A2212/13T 1000KV motor.

 98 B u i l d Y o u r O w n Q u a d c o p t e r

Also critical to motor rotation is the electrical supply that powers the stator. It is
effectively a three-phase power supply that is created by an ESC, which in turn is connected
to the stator. A simplified wiring diagram is shown in Figure 5.5.

This figure reflects a portion of the wiring that illustrates how the three leads from the
ESC are connected to the stator coils. The A-, B-, and C-connection points alternately conduct
current in such a way that the stator creates a rotating magnetic field. If you trace the wire
from the A terminal, you can see that it wraps around stator pole 1 in a clockwise direction,
and also, through stator pole 11 in a counterclockwise direction. The net effect of opposite
current flow is to create opposite magnetic poles at each of the physical stator poles. These
electromagnetic poles are close to the PM poles on the rotor assembly. This whole interaction
causes the rotor to move while the electromagnetic poles are moved through the current
switching that is happening through the A, B, and C terminals. I realize this is all a bit
confusing, but the whole action is carefully orchestrated by the programming contained in
the ESC, which is designed to work with the fixed physical dimensions of the stator and
rotor poles. The beauty of this scheme is that the ESC need control only the rate at which it
sends current pulses to the motor, which then directly control the motor’s rotational speed.

A simplified physical wiring diagram is shown in Figure 5.6 to help clarify the way in
which the stator is wound. To help clarify the BLDC operation, I have included Figure 5.7,
which is a snapshot of an animation showing a BLDC in action.

Figure 5.5 BLDC stator wiring diagram.

Figure 5.6 Simplified physical stator wiring diagram.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 99

I would also suggest going to the website http://www.aerodesign.de/peter/2001/
LRK350/LRK_in_action.gif, if you wish to see the animation of a BLDC in action.

The stator coils themselves are internally connected in either a Wye or Delta configuration.
These two configurations are shown in Figure 5.8.

It makes little difference to the user if the motor is wired in a Wye or Delta configuration.
The real difference comes from the fact that motors wired as a Delta can operate at higher
speeds and voltages while using somewhat less operating current then those wired as a
Wye. The Wye-wound motors are a bit slower but produce more torque at the expense of
higher operating currents. Of course, higher currents mean higher operating temperatures,
which is something to avoid in these BLDC motors.

Heat is always an issue with motors, especially with ones that use strong Neodym PMs.
There is a phenomenon known as the Curie Point, where a magnet can lose its magnetism
due to excessive heat. It can be as low as 80° C for an ultra-strong rare-earth magnet like the
Neodym. This is still a very high temperature as compared to a normal ambient temperature,
but you should realize that there is plenty of current coursing through these motors when
they are operating at full tilt. I would estimate that operating at 100% capacity for 20 minutes
would likely raise the internal motor temperatures to this region. It would be a real shame to
demagnetize the motors, especially if the quadcopter was still flying. Of course, the motors
are irreversibly ruined once the PMs are demagnetized. The procedure to adhere to is to
occasionally back off and operate at a slower r/min to let the motors cool.

Figure 5.7 Stop-action screenshot of a rotating, animated BLDC.

rotating

Figure 5.8 Wye and Delta configurations.

http://www.aerodesign.de/peter/2001/LRK350/LRK_in_action.gif
http://www.aerodesign.de/peter/2001/LRK350/LRK_in_action.gif

 100 B u i l d Y o u r O w n Q u a d c o p t e r

Electronic Speed Controller
The primary purpose of an electronic speed controller (ESC) is to supply power to a motor that
is proportional to its control input, which is normally a servo-type signal. The ESC supplies
power to the motor via a three-phase power supply that was first discussed in the above
motor section. The power supply is strictly DC, even though I used the descriptor "three-
phase," which is normally associated with alternating current (AC) motors. The power-supply
voltage varies only between zero and the peak battery voltage and never goes negative as it
would with an AC power supply. The phasing is really about the current-pulse sequence
that is delivered to the motor and causes it to rotate. (Some figures that are shown later in
this section should help clarify the phase concept.)

Refer to the ESC block diagram shown in Figure 5.9 as you read the description of how
an ESC functions.

The heart of modern ESCs used in quadcopter projects is the Atmel ATmega8L
microcontroller unit (MCU), which is a flash-memory-based, 8-bit microprocessor with some
peripheral-control components. Table 5.1 shows some of the ATmega8L key specifications.

These specifications reveal a very capable controller that can easily handle the demanding
real-time task of converting servo signals to their equivalent three-phase power pulses. You
should note the three pulse-width modulation (PWM) channels that are included in the
controller circuits because they are important components in generating the three-phase
power control signals.

The essence of an ESC is rather simple: it just chops up the battery supply voltage and
sends these power pulses to the motor coils in a sequence that generates a rotating
electromagnetic field in the stator. The MCU creates gate control signals that are sent via
traces labeled as A, B, and C in the block diagram to the MOSFET switches. The three-phase
control signals are next sent to gate circuits that control a series of MOSFETs that, in turn,
switch on the raw battery power. The switched power is then fed to the motor via the A, B,

Figure 5.9 ESC block diagram.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 101

and C power leads. You can think of the MOSFETs as a series of high-speed, solid-state power
switches. They are connected in parallel to be able to handle the high currents associated with
quadcopter operations. I have included a detailed ESC schematic on this book's website,
www.mhprofessional.com/quadcopter, for those readers who are interested in looking at an
actual circuit for a typical ESC. This schematic shows the circuitry for a Tower Pro series ESC
rated for a peak 25-A load.

Figure 5.10 is a picture of a 25-A HobbyKing ESC in which you can see the three motor
leads coming from the left side and the cable for the battery eliminator circuit (BEC) and
battery power leads coming from the right side of the unit.

Feature Description

Flash memory 8 kB capable of in-system programming

RAM 512 B

SRAM 2 kB (holds configuration data)

Max clock speed 8 MHz (internal R/C oscillator)

Analog-to-digital conversion 8 channels with 10 bit accuracy

Operating voltage/current 2.7 to 5.5 V/1 mA (idle) to 3.6 mA (active)

Interrupts 2 external

Counters/timers Two 8-bit Timer/Counter, One 16-bit Timer/Counter

PWM 3 PWM channels

Serial interfaces 1 USART, 1 SPI, 1 I2C

Real-time counter 1 System counter with separate oscillator

Table 5.1 Key ATmega8L Specifications

Figure 5.10 A 25-A ESC.

http://www.mhprofessional.com/quadcopter

 102 B u i l d Y o u r O w n Q u a d c o p t e r

Most ESCs, especially those made in China, are covered in a large heat shrink tube that
prevents inadvertent short circuits and offers some physical protection to the PCB
components. This type of covering, while very inexpensive, does not readily dissipate
internal heat or allow easy access to onboard components. I did remove the heat shrink tube
from a 25-A Turnigy ESC to show you the components that are hidden beneath it. The front
side of this ESC is shown on the left side of Figure 5.11, while another exposed ESC photo
that I gathered from an R/C website is shown on the right side of the figure.

A comparison of the two boards should reveal that despite being from different sources
they are almost identical, at least as far as component type and placement. I believe that
Chinese manufactured ESCs are produced at only a few factories and then sold under a
variety of brand names. It is very much a commodity market, and you are quite likely to
receive exactly the same ESC for a particular amperage rating, no matter the branding. There
is another, darker side to this type of marketing that you should also know about. Some
unscrupulous marketing companies buy rejected ESCs from reputable distributors, rebrand
them, and then sell them as fully functional ESCs. I would strongly suggest that you purchase
only from reputable dealers and distributors and avoid the secondary market, where you
may get a much cheaper price, but also much lower quality. Remember that the ESCs supply
the power to the motors that keep your expensive quadcopter aloft.

Figure 5.11 Two exposed ESC boards.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 103

Figure 5.12 shows the back of the 25-A Turnigy board, on which you can easily see the
metal-oxide-semiconductor field-effect transistor (MOSFET) columns. Each column powers one
of the A, B, or C leads and contains five power MOSFETs that are connected in parallel so
that each one can handle up to a maximum of 5 amperes of current. The power MOSFET
used on this board is a generic p-channel type with a model number of 4407. As used here,
the term generic means that a variety of manufacturers can supply this chip as long as it
meets the functional specifications listed in Table 5.2.

Figure 5.12 25-A Turnigy MOSFET columns.

Specification Description

Maximum voltage -30 V

Maximum current 15 A

Package SOP-8

Table 5.2 4407 Power MOSFET Specifications

 104 B u i l d Y o u r O w n Q u a d c o p t e r

Notice that the current rating is 15 A. This means it is very conservatively rated for this
application, in which the maximum current should not be more than 5 A. The maximum
voltage is also conservative, since the real battery voltage will likely remain below 13 V. The
key take away from this specification review is that the 30-A Elev-8 ESCs should easily
handle any normal flight operations without being overstressed or overheated.

Next, I will discuss the waveforms associated with ESC operations, which will help you
understand how the ESC functions. I am postponing the BEC discussion until later in this
chapter in order to establish a good foundation to understand what happens with the BEC
circuits.

ESC Waveforms
An oscilloscope captures the waveform of typical signals that are sent from the MCU to the
MOSFETs, as shown in Figure 5.13.

A gate control signal will turn on one of the MOSFET columns when it has a positive
voltage. You can see from the figure that Gate A is on for 1 ms, then turns off, and Gate B
immediately turns on. Gate B stays on for 1 ms, shuts off, and Gate C turns on for 1 ms. The
whole process repeats every 3 ms, or approximately 333 Hz. This is the origin of the three-
phase operation that I mentioned earlier in the chapter. Remember, a positive gate voltage
will turn on the MOSFETs to which it is connected. The MOSFETs will then conduct and
allow current to flow through their connected motor coils, thus causing the rotating
electromagnetic field. It is a fairly simple but somewhat elegant scheme that creates a pseudo
three-phase motor whose speed and torque can be closely controlled by the MCU in the ESC
in response to external servo-control signals.

Figure 5.13 Gate control signals from MCU to MOSFETs.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 105

Figure 5.14 is a snapshot of the voltage waveforms on the A, B, and C leads that are
connected to the motor. You should notice that the voltage ramps up from zero to the battery
supply voltage and then back down to a zero level. The ramping is due to the selected
configuration settings that you can program into the ESC. Also, notice that there are some
sharp peaks present in the waveforms that are due to switching transients. These peaks are
normally not a concern because they are very brief and the inductive nature of the motor
circuit will tend to smooth out these transients.

Now that I’ve finished the ESC theory discussion (except for the BEC information that
will be covered in a later section), I will show you an original experiment that demonstrates
some interesting propeller, motor, and ESC interactions.

Propeller, Motor, and ESC Experiment

Warning: This is a potentially dangerous experiment because it involves a sharp, hard-plastic
propeller that is spinning at very high speeds. This propeller is completely invisible when rotating
at high speeds, and users are at risk of serious injury or worse if they inadvertently come in
contact with the spinning propeller. This experiment should not be conducted by unsupervised
children or others not fully capable and aware of the inherent dangers. I do suggest some ideas to
mitigate the potential hazards, but I strongly suggest you simply use my reported results and
avoid repeating the experiment if you feel uncomfortable in doing so.

This experiment places one of the Elev-8 motors at one end of a miniature seesaw or
“teeter-totter,” with the other end supported by a force scale. Figure 5.15 is a sketch of the
experimental setup.

Figure 5.14 Phase A, B, and C voltage waveforms.

 106 B u i l d Y o u r O w n Q u a d c o p t e r

The experiment is based on the balancing of forces in which the upward force or thrust
created by the motor/propeller combination on the left side is balanced by the force-balance
gauge on the right side. Figure 5.16 is a picture of the miniature seesaw that I built from a
¼-in thick acrylic beam to pivot on a wood base.

The seesaw base is made of maple wood because it is strong but easily shaped. I also
placed a nail through a hole drilled through the acrylic beam to form the pivot. It turned out
that the thrust forces were so strong that the beam actually deformed a bit, but I don’t believe
it affected the force readings.

An A2212/13T motor is being driven by a 25-A Turnigy ESC that, in turn, is controlled
by the BOE running a program named ESC_Motor_Control_Demo. I will discuss this
program in depth in a later section, but for now I will describe only how it functions in this
experiment.

The test circuit shown in Figure 5.17 uses a LiPo 3S battery rated at 5000 mAh with a
40–80 C discharge capacity as the ESC power source. Needless to say, the battery is more
than sufficient to power this motor/propeller combination. Not shown in the diagram is the
laptop that the user needs to connect to the BOE in order to control the motor speed.

Figure 5.15 Experiment sketch.

Figure 5.16 Minature seesaw.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 107

The actual test circuit is shown in Figure 5.18 with all the components interconnected.
The ESC BEC cable is connected to the BOE solderless breadboard with the BOE’s pin 14 and
ground connected to it. No other control connections are needed for this setup.

The complete test setup, including the laptop that you use to control the motor speed, is
shown in Figure 5.19. Notice that the seesaw base is C-clamped to the tabletop. The vibrations
are fairly severe, especially at higher speeds. Not clamping the base would cause the seesaw
literally to start flying, which is definitely not a desirable experimental outcome.

An optical tachometer is the last item needed for this experiment. Figure 5.20 shows the
optical tachometer that I used. This tachometer is a clever little device with which you can
directly measure the propeller’s rotational speed by simply pointing it at the propeller from

Figure 5.17 Experimental test-circuit diagram.

Figure 5.18 Actual test circuit.

 108 B u i l d Y o u r O w n Q u a d c o p t e r

a distance of 4 to 6 in. A sensitive photo cell at the top of the unit detects light reflections from
the propeller. Notice that the unit is showing 3600 r/min in the figure, which is due to the
flicker rate of the lights used in the photography setup. Pressing the button on the front of
the unit a second time will switch it from a two-bladed to a three-bladed measurement
mode—definitely a handy tool to possess.

Running the Experiment
Before the experiment can start, the demo program mentioned above must be loaded into
the BOE’s EEPROM. The test circuit must also be connected, as shown in Figure 5.17, with

Figure 5.19 Complete test setup.

Figure 5.20 Optical tachometer.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 109

the BOE’s pin 14 connected to the BEC’s signal lead (usually white or orange) and the ground
leads connected. I attached an oscilloscope lead to the signal lead in order to measure the
waveforms being created by the BOE. I report some key timing measurements in the results
section below.

Note that the BEC’s power lead (usually red) is left unconnected. I did not plug the BEC
connector directly into the BOE’s P14 servo pins because doing so would have tied the
BEC's power into the BOE’s power, which is not a desirable configuration.

A USB serial cable connects a laptop running the Parallax Serial Terminal (PSerT)
program to the BOE. Entering data using the PSerT program is the way you control motor
speed. You just need to enter a single number from 0 to 8, which represent power levels from
0% to 100% respectively. The eight steps mean that increasing each number by one is
equivalent to increasing the power level by 12.5%. It turned out that the maximum level I
could reach was 5, or 62.5% of maximum power. Anything above 5 simply created way too
much vibration and energy in the experimental setup to the point where I felt unsafe in
continuing the operations. However, I did test the motor up to level 8 without a propeller
attached. This was simply to check that the program functioned as expected and to measure
some waveform timing parameters.

Caution: I highly recommend that you place some sturdy barriers around the area where the
propeller is spinning to prevent anyone from inadvertently touching or coming in contact with
the spinning propeller. Remember that the propeller is completely invisible when it is spinning.
Touching a spinning propeller will cause serious injury—no question about it! You might want
to use some large pieces of foam board attached to chairs to fashion a reasonable barrier system. I
am very cautious around propellers, whether they are the small ones discussed here or the large
ones, such as the type I use when flying a light plane. Coming in contact with one of those when
it is spinning would be the last thing you do on this earth.

Figure 5.21 is a screenshot of the PSerT communications screen connected to the BOE
that is running the demo program. You must press the space bar in order to start entering

Figure 5.21 Screenshot of the PSerT connected to the BOE running the demo program.

 110 B u i l d Y o u r O w n Q u a d c o p t e r

numbers, as you can see in the figure. In this screenshot, I started with 0 and then entered 1,
2, 3, and 0. The demo program is designed to start with 0% power so that you don’t get
startled when you press the space bar. That is all that is needed to run this experiment, and
in the next section, I will both show and discuss the results.

Experimental Results
Timing measurements were based on the waveform diagram shown in Figure 5.22. The
pulse width is T1, and the spacing between pulses (period) is T2, as shown in the figure.

In Table 5.3, you see the combined results of running the motor with and without the
propeller. Obviously, no thrust readings were possible without the propeller attached, but it
was possible to capture all the timing readings. Some results, such as those for power, are
computed from other table values.

The x's in the Table 5.3 indicate which measurements were not taken because of excessive
vibrations or because the limits of the measuring instruments were exceeded, or both.
Nonetheless, I was able to record a reasonable set of performance figures for low- to medium-
speed operation. Figure 5.23 shows a chart of thrust versus power level, which appears to be
a reasonable curve based on my research.

Figure 5.24 shows a chart of r/min versus thrust, which is a common method used to
assess the performance of a propeller and is discussed in a following section. I also added
an additional data point that I estimated from the trend of the actual data points. This
estimate reveals that 860 grams of thrust will be generated when the propeller is spinning
at 7000 r/min.

Figure 5.25, which shows the power consumed versus propeller r/min, is the final chart
that I will show. I added an additional data point that I estimated from the trend of the actual
data points. This estimate reveals that 150 watts (W) of power will be required to spin the

Figure 5.22 Waveform measurements diagram.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 111

Power
Setting T1 (ms) T2 (ms) r/min

Thrust
(grams)

Amperes
(w/prop)

Voltage
(V DC)

Power
(w)

0 1.000 21.02 0 0 0.020 12.56 .25

1 1.125 21.12 1140 50* 0.23 12.56 3.01

2 1.250 21.22 3450 168 1.76 12.53 20.05

3 1.375 21.38 4710 343 4.08 12.44 50.76

4 1.500 21.48 6030 631 8.35 12.35 103.12

5 1.625 21.58 7020 x x x x

6 1.750 21.74 x x x x x

7 1.875 21.84 x x x x x

8 2.000 22.00 x x x x x

* This is an estimate because the motor/prop did not create enough thrust to press on the force scale. It is
based on the weight of the motor/prop combination.

Table 5.3 Experimental Results

Figure 5.23 Chart of thrust versus power setting.

Figure 5.24 Chart of thrust versus propeller r/min.

 112 B u i l d Y o u r O w n Q u a d c o p t e r

propeller at 7000 r/min. 150 W would mean that approximately 12.3 A would be needed at
a 12.2-V battery-supply voltage. I would estimate that 7000 r/min would be the maximum
rotational speed for the particular propellers used in the Elev-8. The following calculation
shows you how to determine the maximum flight time using 100% power:

One motor/propeller combination at 7000 r/min = 12.2 A

Four motor/propellers at 7000 r/min = 12.2 × 4 = 48.8 A

Using the 3S LiPo battery discussed in Chapter 3 = 4200 mAh = 4.2 Ah

Maximum time at 7000 r/min = 4.2/48.8 × 60 min = 5.16 min

Wow! Only about 5 minutes at maximum power is a startling fact for quadcopter
operations. Operating times can be extended by using higher-capacity batteries, but that
comes at a cost of reducing the effective payload capacity, since using bigger batteries means
heavier batteries. The other preferred way of extending operating times is to operate at
much lower r/min settings. I created Table 5.4 to show estimated operating times and thrust
versus r/min for the battery described above.

Table 5.4 shows how the propeller speed affects both time and the creation of thrust. It is
definitely a tradeoff that you have to consider constantly while you are operating the

Figure 5.25 Chart of power versus propeller r/min.

r/min
Power
(w)

Voltage
(V DC)

Amperage
(A)

Time
(min)

Thrust
(grams)

Total Thrust
(grams)

0 0 12.56 0.02 n/a n/a n/a

1140 3 12.56 0.24 263.8 50 200

3450 20 12.53 1.60 39.5 168 672

4710 51 12.44 4.10 15.4 343 1372

6030 103 12.35 8.34 7.6 631 2524

7000 150 12.20 12.3 5.1 860 3440

Table 5.4 Thrust and Time versus r/min

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 113

quadcopter. The basic Elev-8 weighs approximately 1400 grams (including the battery),
which means it will not even lift off unless the propellers are spinning at least 4800 r/min.
That translates to about a 15-min operating cycle, which nicely matches my actual operating
experience. If you add several hundred grams of payload, you should not expect any more
than 10 to 12 min of flight time, assuming you do not operate at maximum power.

Now I want to discuss the timing values of the ESC, as shown in Table 5.3. The T1
column shows the control-pulse width for the various power settings. The pulse ranges from
1.0 ms for zero power to 2.0 ms for 100% power. It is linear and proportional, which means
that a 1.5-ms pulse width would represent 50% power. It is useful to know this relationship,
especially if you decide to create your own flight-control board. The pulse period goes from
21.02 to 22.00 ms because of the way the demo program creates the pulse train. This means
that the frequency ranges from 45 Hz (22 ms) to approximately 47.6 Hz (21.02 ms). Although
it does not matter at all for this demo program, it might affect flight-control responsiveness
if this program code were to be incorporated into a quadcopter flight-control program. The
whole matter of ESC pulse-train frequency is a bit controversial, as there are a number of
quadcopter designers who insist that ESCs should have a 400-Hz operating frequency versus
the standard 50 Hz. Most everyone in the R/C field agrees that the 50 Hz is quite adequate
for the typical, fixed-wing aircraft. However, some insist that it is not nearly responsive
enough to match the desirable quadcopter flight-response characteristics. I am still unsure
about this claim, although I am experimenting with some high-speed ESCs that have been
programmed with the so-called SimonK firmware. The SimonK firmware is named after
Simon Kirby, who created a high-speed software that can be flash-programmed into most
ATmega8L-controlled ESCs. Reprogramming flash memory in an ESC is done by using the
six ISP pins, which are shown at the bottom left of the ESC PCBs in Figure 5.11. I would not
recommend attempting to reprogram your ESCs unless you have successfully done it before.
Otherwise, you will likely brick them, that is, make them inoperative unless they are restored
to their original firmware. You can refer to the following website to learn more about high
speed ESCs: wiki.openpilot.org/display/Doc/RapidESCs.

Battery Eliminator Circuit
The battery eliminator circuit (BEC) refers to the three-wire lead set extending from the ESC.
Typically the wires are color coded as follows:

1. white = signal
2. red = power
3. black = ground

Other colors are also used, including brown, red, and orange, where brown is ground,
red is power, and orange is signal. I have previously referred to the BEC cable as a servo
connection, which is partly true. In a normal servo cable, white is still signal, black is still
ground, but red is a power consumer not a power supplier, as is the case with the BEC cable.
This is why it is called a battery eliminator, as the BEC normally plugs into an R/C receiver
and supplies the power to that receiver. This eliminates the need for a separate receiver
power supply, hence the name BEC. I have extracted a portion of the detailed ESC schematic,
which is posted online at www.mhprofessional.com/quadcopter, as Figure 5.26.

You should be able to identify two 7805 regulator chips whose outputs are connected
in parallel. This combined output is connected to the BEC red wire. The 7805s are linear
regulators that have been manufactured for many years by many companies. Each one can

http://www.mhprofessional.com/quadcopter

 114 B u i l d Y o u r O w n Q u a d c o p t e r

output a maximum current of 1 A at 5 V. There is a maximum of 2 A available at the BEC
connector, since two regulators are paralleled. Two amperes is usually considered to be
plenty of current to power an R/C receiver with several servos connected to it. Normally,
there is not an issue when you connect a single BEC to an R/C receiver, which is the case
for most R/C aircraft. An issue arises when four BECs are connected simultaneously to
the same flight-control board. The flight-control board then uses the power provided by the
ESCs to power the R/C receiver connected to it as well as any auxiliary servos that may be
incorporated into the quadcopter. When you have the four BECs paralleled in a quadcopter,
then eight 7805s are in turn paralleled. Some quadcopter designers think that having
multiple BECs feed a common supply point can lead to trouble. This trouble could manifest
itself as uneven power production whereby one BEC circuit would eventually take the
whole load and overheat from the excessive current. It is my belief that there is no potential
problem provided that all the ESCs are the same model and all use 7805s as regulators. After
all, two 7805s are internally paralleled to increase the current capability, which leads me to
believe that externally paralleling BECs will easily be tolerated, with each set of regulators
providing a proportional amount of the load. The recommended solution for eliminating
this potential problem is to cut all but one of the red BEC leads that are connected to the
flight-control board.

Caution: Do not cut all the red BEC leads, or there will be no power flowing to the flight-control
board.

I have operated my quadcopters both ways and encountered no problems with either
one BEC powering the flight-control board or all four powering it. The only caveat arises if
you use different model ESCs because they can have regulator circuits that are different from
the very stable 7805-based units. If that is the case, I would recommend using only the single
lead configuration.

Propellers
Propellers, while seemingly simple, are in reality, quite complex devices. They are airfoils
that have been twisted to produce a thrust while rotating through an air mass. Propellers

Figure 5.26 BEC schematic.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 115

have been relatively unchanged since the days of the Wright brothers. Modern propellers are
about 80% efficient, which is about the same as the Wrights experienced. Propeller efficiency
is defined as:

H = =
propulsive power output

shaft power input
thrust + axial velocity

resistance torque + angular velocity

Basically, efficiency is about how much effective power is produced versus how much is
input. Input, in our case, is the rotating outrunner motor, and output is the resultant thrust
that is created. Efficiently operating propellers depend on an optimal angle of attack (AOA),
which is mainly a function of how fast the propeller is rotating and how much power is being
generated. In complex airplanes, the propeller AOA is adjustable; however, in our case, the
propellers have a fixed pitch, or AOA. The AOA is set by the manufacturer in a compromise
setting that tries to optimize efficiency for the expected operating range. There is really
nothing you can do to improve propeller efficiency other than to try different models that
have been designed to closely match your requirements. I think that the propellers provided
in the Elev-8 kit are adequate to do what is needed. They are also relatively inexpensive,
which is a key consideration, since you will need to replace them after flight mishaps.

Selecting a properly sized propeller is an important activity and a topic that has some
degree of anecdotal qualities associated with it. Everyone has an opinion on this topic so I
will offer some general guidelines:

•	 Thrust is proportional to the propeller surface area; therefore, larger propellers
mean more thrust. When compared to the small-diameter propellers, the large ones
also need more power in order to spin and achieve the same angular velocity.

•	 Conversely, small-diameter propellers need to spin faster to create the equivalent
thrust of a large-diameter propeller.

•	 Quadcopters tend to hover more than to fly in straight lines. A smaller pitch, or
AOA, is better suited for hovering than for aerobatic operations.

•	 Propellers should always be balanced to reduce vibrations. Investing in a quality
propeller balancer is a good idea.

•	 Carbon-fiber propellers are stronger than and vibrate less than plastic propellers.
Unfortunately, they cost quite a bit more than the plastic. Hold off on this investment
until you improve your flying skills and lessen the amount of propeller damage.

Table 5.5 shows some standard propeller sizes used in quadcopters to aid you in selecting
a propeller. It is very important to determine what functions you want your quadcopter to

Model Diameter Pitch Description

APC 1047 10 4.7 Popular size for midsized quadcopters. This is the
type used in the Elev-8

RPP 1045 10 4.5 Another popular size for midsized quadcopters

EPP 1245 12 4.5 Large propeller suitable for larger quadcopters

EPP 0938 9 3.8 Small propeller suitable for small quadcopters

EPP 0845 8 4.5 Small propeller often used on small quadcopters

Table 5.5 Standard Quadcopter Propellers

 116 B u i l d Y o u r O w n Q u a d c o p t e r

perform before you select a motor and propeller combination. Choosing a video platform
would lead you to select a propeller with a high pitch and/or large diameter so that it could
turn at a lower r/min to produce enough lift for the camera, while minimizing vibrations.
You should look at smaller diameter propellers with medium pitch if you are looking for a
quadcopter that can perform aerobatics.

Comprehensive Quadcopter Analysis
I found an interesting website that will interactively create a set of performance characteristics
for your quadcopter based on information you provide: http://www.ecalc.ch/xcoptercalc
.htm?ecalc&lang=en. All you need to do is input these parameters:

•	 Overall quadcopter weight
•	 Battery type
•	 Select motor from a database list
•	 Select propeller from a database list

Then click on the Calculate button and you will see the results shown in Figures 5.27
and 5.28.

A wealth of information is in the calculation results, with much of it reflecting discussions
presented in this chapter. However, I suggest that you use the website data with caution, since
it has not been independently reviewed. However, it all appears to be reasonable and useful.

When reviewing the motor characteristics shown in Figure 5.28, I noticed that the motor
achieves about 80% efficiency when operating at 3 A or above. I also saw that the motor

Figure 5.27 Calculation results from the interactive xcopterCalc website.

http://www.ecalc.ch/xcoptercalc.htm?ecalc&lang=en
http://www.ecalc.ch/xcoptercalc.htm?ecalc&lang=en

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 117

temperature is not predicted to rise too appreciably even when operating above the
manufacturers recommendations. However, I am not convinced that it will remain cool if
operating in the extreme regions.

This last section concludes my regular discussion on the quadcoptor propulsion
components. What follows is a detailed program analysis of the ESC_Motor_Control_Demo
program that was used in the experiment. It is presented for those readers who are obviously
interested in such an analysis and who might want to use this program as a template for
further experiments, and perhaps, a future flight-control program. The discussion also
explores one Propeller Assembly Language (PASM) routine because it is used in the demo
program. Finally, I delve into a brief C language discussion in which I demonstrate how a
simple Propeller C Language routine can replace the somewhat obtuse PASM routine. Those
readers not interested in such minutia can skip the following sections without fear of losing
any continuity in the overall discussions.

ESC_Motor_Control_Demo Analysis
This analysis begins with the code listing. The program was made available on Parallax’s
Propeller forum, which is a very valuable resource of expert knowledge. Members of the
forum can answer just about any of your questions regarding the Propeller chip, or even the
Elev-8 for that matter.

‘‘ Single_Servo_Assembly
‘‘ Author: Gavin Garner
‘‘ November 17, 2008
‘‘ See end of file for original comments
‘───’
‘ Modifications by Cluso99.

Figure 5.28 Characteristic motor graphs from the xcopterCalc website.

 118 B u i l d Y o u r O w n Q u a d c o p t e r

‘ Modified to drive a Brushless Motor using an ESC/BEC motor
controller.
‘ Note a BEC type ESC supplies 5V on the center servo pin (some
servos are different).
‘ Therefore, only two wires should be connected, being ground and
servo pin.
“ I have used the TV output because it has a series resistor for
protection and ground outputs. I have connected an RCA plug to a
servo type cable & plug from an old PC and a 3pin stake block. You
could also put a series resistor in the RCA plug for protection if
you wish.”

“ Here is the connection diagram...
 NOTE: Deleted from this copy, see original if needed”
‘───’
‘ Uses the PropPlug and PSerialT to set the motor speed from the
PC Keyboard
‘ 0=OFF, 1=12.5%, 2=25%, 3=37.5%, 4=50%, 5=62.5%, 6=75%,
7=87.5%, 8=ON
‘───
“ RR20100426 _rr001 use 20ms and 1ms...2ms (motor 1ms=off,
1.5ms=50%, 2ms=100%)”
“ uses fdx and PSerialT: 0=OFF, 1=12.5%, 2=25%, 3=37.5%, 4=50%,
5=62.5%, 6=75%,7=87.5%, 8=ON”

CON
 _xinfreq = 5_000_000
 _clkmode = xtal1+pll16x ‘The system clock is set at 80MHz
 (rec’d for optimal res)
 Servo_Pin = 14 ‘ use the TV pin (My note: servo
 pin 14)
 rxPin = 31 ‘ serial
 txPin = 30
 baud = 115200
 tvPin = 14 ‘TV pin (1-pin version)
 kdPin = 26 ‘Kbd pin (1-pin version)

OBJ
 fdx : “FullDuplexSerial” ‘serial driver

VAR
 long position ‘The assembly program will read this variable
 from the main Hub RAM to determine the servo
 signal’s high pulse duration

PUB Demo | ch

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 119

 waitcnt(clkfreq*5 + cnt) ‘delay (5 secs) to get
 terminal program running
 fdx.start(rxPin,txPin,0,baud) ‘start serial driver to PC
 fdx.str(string(13,”Cluso’s Motor Control Test v002”,13))
 fdx.str(string(“Press <space> to start”))
 repeat
 ch := fdx.rx
 until ch := ”“
 fdx.tx(13)
 position := 80_000 ‘1ms (motor off)

 cognew(@SingleServo,@position) ‘Start a new cog and run the
 assembly code starting at the “SingleServo”
 cell 0 and passing the address of the
 “position” variable to that cog’s “par” reg
 repeat
 ch := fdx.rx
 case ch
 “0” : position := 80_000 ‘1ms OFF
 “1” : position := 90_000 ‘1.125ms 12.5%
 “2” : position := 100_000 ‘1.250ms 25%
 “3” : position := 110_000 ‘1.375ms 37.5%
 “4” : position := 120_000 ‘1.5ms 50%
 “5” : position := 130_000 ‘1.625ms 62.5%
 “6” : position := 140_000 ‘1.75ms 75%
 “7” : position := 150_000 ‘1.875ms 87.5%
 “8” : position := 160_000 ‘2ms ON

DAT
‘The assembly program below runs on a parallel cog and checks the
value of the “position” variable in the main hub RAM (which other
cogs can change at any time).
‘It then outputs a servo high pulse for the “position” number of
system clock ticks and sends a 20ms low part of the pulse.
‘It repeats this signal continuously and changes the width of the
high pulse as the “position” variable is changed by other cogs.

org ‘Assembles the next command to the first cell (cell 0) in
 the new cog’s RAM
SingleServo mov dira,ServoPin ‘Set the direction of the
 “ServoPin” to be an output (and
 all others to be inputs)

Loop rdlong HighTime,par ‘Read the “position”
 variable (at “par”) from main
 RAM and store it as “HighTime”

 120 B u i l d Y o u r O w n Q u a d c o p t e r

 mov counter,cnt ‘Store the current system
 clock count in the
 “counter” cell’s address
 mov outa,AllOn ‘Set all pins on this cog
 high (really only sets
 ServoPin high because
 all the rest are inputs)
 add counter,HighTime ‘Add “HighTime” value to
 “counter” value
 waitcnt counter,LowTime ‘Wait until “cnt” matches
 “counter” then add a 20ms
 delay to “counter” value
 mov outa,#0 ‘Set all pins on this cog
 low (really only sets
 ServoPin low because all
 the rest are inputs)
 waitcnt counter,0 ‘Wait until cnt matches
 counter (adds 0 to
 “counter” afterwards)
 jmp #Loop ‘Jump back up to the cell
 labled “Loop”
‘Constants and Variables:
ServoPin long |< Servo_Pin ‘This sets the pin that
 outputs the servo signal
 which is the white wire
 on most servomotors).
AllOn long $FFFFFFFF ‘This will be used to set
 all of the pins high
LowTime long 1_600_000 ‘This is a 20ms pause time
 for a 80MHz system clock.
counter res ‘Reserve one long of cog
 RAM for this “counter”
 variable
HighTime res ‘Reserve one long of cog
 RAM for this “HighTime”
 variable
 fit ‘Makes sure the preceding
 code fits within cells
 0-495 of the cog’s RAM

{{Copyright (c) 2008 Gavin Garner, University of Virginia
Single_Servo_Assembly

MIT License: Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 121

Software is furnished to do so, subject to the following conditions: The above copyright notice and
this permission notice shall be included in all copies or substantial portions of the Software. The
software is provided as is, without warranty of any kind, express or implied, including but not
limited to the warranties of non-infringement.

In no event shall the author or copyright holder be liable for any claim, damages or other
liability, out of or in connection with the software or the use or other dealings in the software.

Notes
This program demonstrates how to control a single R/C servomotor by dedicating cog-to-
output signal pulses, using a simple assembly program. Once the assembly program is loaded
into a new cog, it continuously checks the value of the “position” variable in the main RAM
(the value of which can be changed at any time by code running on any other cog) and creates
a steady stream of signal pulses with a high part that is equal to the value of the “position”
variable times the clock period (1/80 MHz) in length and a low part that is 10 ms in length.
(This low part may need to be changed to 20 ms depending on the brand of motor being used,
but 10 ms seems to work fine for Parallax/Futaba Standard Servos and gives a quicker
response time than 20 ms.) With an 80-MHz system clock, the servo-signal’s pulse resolution
is between 12.5–50 ns; however, the control circuitry inside most analog servomotors probably
will not be able to distinguish between such small changes in the signal.

To use the above code in your own Spin code, simply declare a “position” variable as a
long, start the assembly code running in a cog with the “cognew(@SingleServo,@
position) line, and copy and paste my DAT section into the DAT section of your own code.
Note that you must change the number “7” in the ServoPin constant declaration in the
assembly code to select a pin other than Pin 7 to be the output pin for the servo signal.

If you are using a Parallax/Futaba Standard Servo, the range of signal-pulse widths is
typically between 0.5–2.25 ms, which corresponds to “position” values between 40_000 (full
clockwise) and 180_000 (full counterclockwise). In theory, this provides you with 140_000
units of "position" resolution across the full range of motion. You may need to experiment
with changing the “position” values a little to take advantage of the full range of motion for
the specific R/C servo motor that you are using. However, you must be careful not to force
the servo to try to move beyond its mechanical stops. If you find that your propeller chip or
servomotor stops working for no apparent reason, it could be that the motor is sending
inductive spikes back into the power supply or it is simply drawing too much current and
resetting the propeller chip. Adding a large capacitor (e.g.,1000 uF) across the power leads of
the servo motor, or using separate power sources for the propeller chip’s 3.3-V regulator and
the servomotor’s power supply will help to fix this.

The Spin portion of the program uses the FullDuplexSerial object that sets up a means
by which the user can input data via the keyboard as well as view data on the PC screen.
The PSerT program must first be running on the PC, as was discussed above, and then
the FullDuplexSerial object will take over all the duties of communicating between the
program and the PC. The FullDuplexSerial object has the local reference name of fdx,
which is short for full duplex. The fdx object is preset for a 115,200 baud rate as well as
using the normally designated Prop chip pins 31 for receive and 32 for transmit. These pin
designations are standard on all Parallax Propeller development boards and match the
Prop chip's functions.

I would like to point out the presence of a “magic number” in the Spin statement that
starts the fdx object:

fdx.start(rxPin,txPin,0,baud) ‘start serial driver to PC

 122 B u i l d Y o u r O w n Q u a d c o p t e r

I found the meaning of this magic number in the website http://propeller.wikispaces
.com/Full+Duplex+Serial. The 0 in the argument list represents the operating mode for the
full duplex serial object. Below is the wiki documentation regarding the mode:

.start(rxpin, txpin, mode, baudrate)

Start serial driver—starts a cog
mode bit 0 = invert rx
mode bit 1 = invert tx
mode bit 2 = open-drain/source tx
mode bit 3 = ignore tx echo on rx

I guess it is just the teacher in me, but I would prefer to eliminate all magic numbers and
instead modify this code to include a constant definition as follows:

In the CON section add

mode = 0

and in the PUB section modify

fdx.start(rxPin, txPin, mode, baud) ‘start serial driver to PC

You see how much clearer it all becomes, although it is true that you will have to go back
into the documentation to discover exactly how the mode works. Please refer to my rant in
the previous chapter regarding magic numbers. Now back to the analysis.

There is a “repeat – until” loop checking for a character from the PC. This code snippet
is shown below:

 repeat
 ch := fdx.rx
 until ch := “ ”

All you need to do is press the space bar in order to enable you to enter the desired
power level. The motor always starts at the 0 power level meaning, no rotation. The Spin
program will then launch a new cog after the initial position value (80,000 in this case) is
stored. The following code snippet creates this new cog object:

cognew(@SingleServo,@position)

This statement creates a new cog that runs code beginning at the symbolic address
“SingleServo,” which is also the start of an assembly language program. The statement
also instructs the cog to load, at boot time, the value stored in the hub RAM location named
“position” into its “PAR” special purpose register (SPR). I introduced the SPRs at the end of
Chapter 4, but I did not really elaborate on them. The PAR SPR is the so-called boot register,
which means that a value will be stored in it when the cog is created and/or rebooted when
it is executing assembly code. You should note that creating a cog that is designated to
execute assembly language is substantially different from creating a cog to run a method
in another Spin object, which was the situation in all of the Chapter 4 examples. The

http://propeller.wikispaces.com/Full+Duplex+Serial
http://propeller.wikispaces.com/Full+Duplex+Serial

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 123

“@SingleServo” is the way Spin knows to go to a specific memory location in a cog’s
RAM to load and execute instructions. By default, the cog memory location is normally set
at 0, which is explained below in the assembly language discussion.

An infinite loop then runs and checks for a new character appearing in the fdx buffer. It
will subsequently store the clock-cycle count equivalent to the pulse width desired in the
“position” variable. Remember from the above experiment that 1 ms is 0 or no rotation,
while 2 ms is 100% or maximum rotation. 1 ms is equal to 80,000 clock cycles, while 2 ms is
equal to 160,000 clock cycles, all with respect to an 80-MHz system clock. The specific cycle
number is stored in a designated memory location in the hub RAM memory named
“position,” as previously discussed. Thus, the commanded pulse width is always available
to the newly created cog using the PAR SPR. Also, recall that the cogs are constantly being
refreshed by the hub; thus, any new values appearing in a shared hub memory location will
almost instantly appear in the appropriate cog SPR.

Next is a discussion of the few assembly language instructions that are part of this demo
program. I have repeated them below so you do not have to constantly refer to the original
code. I also deliberately removed all the comments so you could focus on the actual
instructions as well as the numbering of the lines for an easier reference. I will go through
the instructions one at a time in Table 5.6, since that is probably the least confusing way to
approach this somewhat complex subject.

1 org
2 SingleServo mov dira, ServoPin
3 Loop rdlong HighTime, par
4 mov counter, cnt
5 mov outa, AllOn
6 add counter, HighTime
7 waitcnt counter, LowTime
8 mov outa, #0
9 waitcnt counter, 0
10 jmp #Loop
11 ServoPin long |< Servo_Pin
12 AllOn long $FFFFFFFF
13 LowTime long 1_600_000
14 counter res
15 HighTime res
16 fit

The remaining line item not included in Table 5.6 is line 16, fit, which is not an

instruction per se, but an assembler directive just like org is in line 1. The fit directive
ensures that all the data and instructions are nicely aligned as four byte packages or words,
since that is how the cog memory must be configured.

The last remaining line item to be further discussed is line 11:

ServoPin long |< Servo_Pin

The value Servo_Pin is defined in the Spin program CON section as the decimal value 14.
This value must be decoded into a specific bit position, which is the purpose of the bitwise

 124 B u i l d Y o u r O w n Q u a d c o p t e r

decode instruction “|<.” The above bit operation results in the following binary bit pattern
being stored into the ServoPin variable:

%00000000 00000000 01000000 00000000

This bit pattern is copied into the cog’s dira register, thereby enabling pin 14 as an output,
which is the desired outcome.

Line Number Instruction Explanation

1 org An assembler directive that establishes the
starting point in cog memory where all the
succeeding instructions and data will be stored.
Normally 0 as it is in this case

2 SingleServo mov
dira, ServoPin

The identifier, SingleServo, is assigned
the first memory address which is 0. The
mov instruction takes the source data value,
ServoPin, and copies it into the cog’s GPIO
data direction register, dira.

3 Loop rdlong
HighTime, par

The identifier, Loop, is assigned the next
available address, which is also the start of a
loop. The rdlong instruction copies the long
value from the par register into the HighTime
variable that was created by line 15.

4 mov counter, cnt The system counter value, cnt, is copied into
the counter variable created by line 14.

5 mov outa, AllOn The constant AllOn setup in line 12 is copied
into the cog’s GPIO data register, outa. This
instruction turns on pin 14.

6 add counter,
HighTime

The value stored in the variable, HighTime, is
added in two’s complement fashion to the value
in the variable, counter.

7 waitcnt counter,
LowTime

Wait until the system counter, cnt, matches
the current value in counter, and then add the
value of LowTime (defined in line 13) to the
counter value

8 mov outa, #0 Move the immediate value 0 to the cog’s GPIO
data register, outa. This will cause a zero or
low output on pin 14.

9 waitcnt counter, 0 Wait until the system counter, cnt, matches
the current value in counter and then add
the value of 0 to the counter value. This
effectively keeps the pin output low for the
LowTime value, which is 20 ms.

10 jmp #Loop Unconditionally jump back to the memory
location named Loop that was defined in line 3.

Table 5.6 Assembly Language Routine Analysis

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 125

A Brief Introduction to the C Language
You should probably appreciate a simpler alternative to creating fast code after going
through the above assembly language discussion. Well, you are in luck, as Parallax has
recently made available a C language development environment for the Prop chip. The C
language has been around for many years, originating in 1969 thru 1973. It has evolved and
transformed to the point where it now supports many different types of computing platforms
ranging from high-end servers to the minimalist embedded microprocessor. The Prop C
development software is named SimpleIDE and is available free of charge from the Parallax
"learn" website http://learn.parallax.com/.

It is a fairly simple download-extract-and-install process. My only caution is that you
must be sure that the compiler, library, and workspace locations are properly identified. You
do this by clicking on Tools in the SimpleIDE menu bar and then on the Properties selection.
A dialog box, as shown in Figure 5.29, will appear. You should see locations similar to the
one in this figure if you installed the IDE using the default settings.

I elected to load one of the example programs to test out my SimpleIDE installation.
Feeling somewhat confident, I loaded the program named Standard Servo Position.c that is
included in an Examples library that may be downloaded from the Parallax "learn" website.
My computer’s location for the directory holding this program was: c:/Program Files (x86)/
SimpleIDE/Workspace/Learn/Examples/Devices/Motor/Servo.

I included the above path only to indicate that it is relatively easy to lose track of where
all your project, source, library, and include files are located. Losing track of the location of
these files may easily be a source of great frustration when you start getting compile-time
errors that a given file could not be found. I suggest you follow all the good guidelines
provided in the Parallax "learn" website http://learn.parallax.com/ regarding how to setup
the SimpleIDE.

I guess I was a bit lucky in that it took only two attempts to successfully compile and
download the example servo-control program into the BOE. Figure 5.30 is a screenshot of the
SimpleIDE with the source code as well as most of the compiler and loader reports, which
are shown below the source code editor pane.

The example program is very simple in that it directs a standard Hitec servo to move to
several positions and then pause for three seconds at each position. The servo was connected

Figure 5.29 SimpleIDE properties dialog.

http://learn.parallax.com/
http://learn.parallax.com/

 126 B u i l d Y o u r O w n Q u a d c o p t e r

to the BOE P16 servo port with the source code reflecting that selection. Figure 5.31 shows
the BOE and servo connected.

You should also understand that the SimpleIDE represents a substantial development
effort by Parallax engineers as well as many others who develop and maintain the open-

Figure 5.31 BOE and standard servo setup for the example program.

Figure 5.30 Screenshot of the SimpleIDE with the example servo program loaded.

 C h a p t e r 5 : Q u a d c o p t e r P r o p u l s o r s 127

source GCC compiler that the SimpleIDE uses to compile and load the source code. I have
used GCC for many years but never with as much ease as I experienced with the SimpleIDE.
Well done Parallax!

Summary
First, congratulations as you have slogged through this somewhat complex but (I hope)
interesting chapter. I believe you will have gained a substantial appreciation of the Elev-8
propulsor components that should help you understand and evaluate new choices when
(not if) it comes time to modify your quadcopter.

The chapter began with a detailed examination of the highly energetic and somewhat
unusual motors that power quadcopters. These motors are known as outrunners because the
rotors are on the outside of the motor, while the stator is stationary on the inside (a bit
unusual as compared to normal electrical motors). These motors are also multiphasic—they
are driven by dedicated controllers known as electronic speed controllers or ESCs. The motors
are very light and compact but can produce extreme amounts of power for their size, which
is why quadcopters can fly.

The ESC that powers the motor was discussed next with attention drawn to the ATmega8L
microcontroller that controls the ESC. I also explained how the raw battery power is switched
on by a series of power MOSFETs to provide the three-phase power for the motor. ESC
waveforms were shown to help illustrate how the three-phase power technique works.

A lengthy discussion followed regarding an experiment that I designed to show how an
Elev-8 motor functioned with one of the propellers mounted on it. I went through the setup
of the experiment and explained the control circuitry that was centered on the Parallax
Propeller Board of Education (BOE) as the controlling system. The program running in the
BOE was also thoroughly examined later in the chapter.

I discussed all the experiment’s results and used a series of charts to help explain what
caused certain outcomes and why. The results also provided some useful information
regarding power consumed versus available flight time and other operational tradeoffs that
should always be considered

Next came a brief discussion on ESC update rates and how some ESC designers are
concerned about slow updates.

I discussed the battery eliminator circuit (BEC), describing its design and purpose. I also
pointed out some potential issues with BECs that are applicable only in a quadcopter design.
A solution was also offered for those readers so inclined to follow it.

A section on the design and selection of propellers was next. Here I included a handy
table of standard propellers that are commonly used in quadcopter designs. A set of propeller
selection guidelines was also provided to help you choose knowledgeably.

The propulsor discussion ended with a brief introduction to a comprehensive and
interactive website that allows you to conduct a detailed analysis on your quadcopter
design. It is an incredible tool that should be used with care due to the great amount of
information and data presented.

The remaining section of the chapter concerned a detailed analysis and discussion of the
BOE control program that ran the experiment. I discussed the program in two major
divisions, the first being the Spin code and the second, the assembly language code. These
discussions were initiated to further increase your background in the Propeller languages
that began in Chapter 4.

I recognized that the assembly language discussion would be a bit daunting to readers
who are not too conversant in imperative programming. I still wanted to introduce the topic

 128 B u i l d Y o u r O w n Q u a d c o p t e r

and take you through it as gently as possible. The good news is that now an alternative to
assembly language exists, and it is the C Language for the Propeller.

The chapter concludes with a very brief and concise introduction to the C language that
has been adapted or “ported” to run on a Prop chip. It runs in an environment known as the
SimpleIDE, and it is very easy to use. Take my word on this last statement, as I have used C
tool chains (environments) for the last 30 years, and this one is definitely the best, at least for
the embedded market. I showed a reasonably complex application that controlled a standard
servo using the BOE. I had this application up and running within 30 minutes, which is
almost instantaneously in software development time.

The next chapter takes an interesting view of what makes up a modern radio-controlled
(R/C) system and how it functions. There are some important points that you should be
aware of when operating an R/C system in today’s crowded spectrum. You don’t want to lose
control of your quadcopter, and unfortunately, it is easier to do than you think. So read on.

chapter 6
Radio-Controlled

Systems and Telemetry

Introduction
The remote control by radio waves of devices ranging from battleships to insect-sized flying
machines has been ongoing since Nikola Tesla’s experiment in 1898. I will not repeat the
history here but instead refer you to the interesting Wikipedia entry at http://en.wikipedia
.org/wiki/Radio_control. This chapter focuses on how a modern 2.4-GHz radio-controlled
(R/C) system functions and explores additional features that will make your quadcopter
flying experience more enjoyable, and maybe even a little educational.

Evolution of Model R/C Systems
The R/C systems used to control model aircraft first appeared in the early 1950s. The
practical reason for this was the advent and availability of cheap transistors. Up until that
time period, radio systems were built using vacuum tubes that required bulky components
and batteries, neither of which could be easily placed in small model aircraft. Transistor
circuits changed all of that because they require only a little battery power, run cool, and take
up very little space. Over time, discrete transistors gave way to integrated circuits, which
eventually morphed into the powerful microcontrollers that are in practically all modern
R/C transmitters and receivers. Of course, the servos, which are the mechanical actuators
being controlled by the R/C receiver, also changed from relatively large and heavy units to
very lightweight yet powerful units. I will discuss servos in the next chapter, since there is
plenty of material to cover regarding their use and function.

The best way to understand the modern R/C system is to start with a discussion about
the basics that underpin any radio system. I am not going to make this a tedious tutorial but
will try to hit the high points to provide you with a reasonable idea of what makes the
2.4-GHz system tick.

Carriers and Modulation
All radio communications use a wave known as a carrier. This is the fundamental
electromagnetic wave that is created at the transmitter to carry information or data to a
compatible receiver. Carrier waves normally do not have any information impressed on

129

http://en.wikipediaorg/wiki/Radio_control
http://en.wikipediaorg/wiki/Radio_control

 130 B u i l d Y o u r O w n Q u a d c o p t e r

them but must be modulated or altered in some standard fashion in order to send data.
There are three principal modulation methods:

1. Amplitude modulation (AM)
2. Frequency modulation (FM)
3. Phase modulation (PM)

Figure 6.1 shows the waveform representations for these three modulation methods.
Many more modulation schemes exist today, but they are all dependent on some

combination of AM, FM, or PM. Most of the relevant modulation schemes that currently use
the R/C field are shown in Table 6.1. Sharp-eyed readers might be wondering why I didn’t
include pulse-width modulation (PWM) in the list in Table 6.1. After all, I did discuss it in great
detail in the previous chapter. The answer is that PWM is actually handled as part of pulse-
position modulation (PPM). Figure 6.2 should help clarify how this is accomplished.

Typical pulses used for R/C servo-control signals have pulse widths that vary from 1 to
2 ms and repeat every 20 ms, as shown on the left side of Figure 6.2. That means as much as
18 ms of time is wasted, or not utilized, if only one pulse is sent per 20-ms cycle, or frame
as it is called in PPM terminology. PPM overcomes this limitation by sending all of the servo
channel pulses, one after the other with no wasted space between them, as shown on the

Type Abbreviation Name Description

Analog AM Amplitude
Modulation

Changes the carrier wave amplitude
proportional to the data.

Analog FM Frequency
Modulation

Slightly changes the carrier frequency
proportional to the data.

Digital PPM Pulse-Position
Modulation

Changes the pulse position in a frame
proportional to the data.

Digital PCM Pulse-Coded
Modulation

Sends digital data describing the data.

Spread
Spectrum

DSSS Direct-Sequence
Spread Spectrum

Sends PCM data over a spectrum range
with error corrections.

Spread
Spectrum

FHSS Frequency-Hopping
Spread Spectrum

Sends PCM data using synchronized
carrier frequencies that hop throughout
a spectrum using a pseudorandom
sequence.

Table 6.1 Common R/C Modulation Techniques

Figure 6.1 AM, FM, and PM modulation waveforms.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 131

right side of Figure 6.2. PPM efficiently utilizes the radio-frequency spectrum with up to
10 channels available in a 20-ms frame in which each channel occupies only a 2-ms slot. I am
sure that even the total frame period is adjusted to accommodate the maximum number of
channels being sent, since again, it makes no sense to waste 10 ms every frame if there are
only 5 channels available to be transmitted.

After receiving the PPM stream, the R/C receiver restores each servo channel and
ensures that each channel has only the required one pulse for every 20-ms period. Modern
R/C receivers usually use a microprocessor to control this process.

PCM is quite a bit different from PPM, since each channel’s data is sent using data bits
that represent the value of the control function. The actual value is dependent upon the
number of bits used to encode the position of the transmitter control being used. Let’s
consider a throttle-stick control in which 10 bits may typically be used to encode the relative
position of the throttle. There are 1024 positive integer numbers that can be represented by
10 bits, which is equivalent to 210 power. Therefore, 0 would be the 0% throttle position, while
1023 would be the 100% throttle position. Sending this number via PCM to the receiver
ensures an extremely accurate representation of the equivalent throttle-control position, as it
is set on the transmitter. PCM is the quality method that all reliable R/C systems use.

Not all transmitter controls need this precision. Consider the gear control where only
two values are required, say 0 for gear up and 1 for gear down. It is nonsensical to send
10 bits for this function where 1 bit would suffice. PCM systems are optimized to account for
the transmission of varying channel data precision where some channels require many data
bits for the encoded channel data, while others require only a few.

Noise
Noise, or electrical interference, is the single most important problem with R/C systems.
Noise present in an operating area could easily cause you to lose control of your aircraft.
This could result in you losing the aircraft, or, even worse, causing injury to nearby spectators
and/or damage to property. You would be liable for injury and damages even though you
were not at fault for the interference that caused the loss of control. You always want to
avoid these unfortunate scenarios, which is the reason that some very robust and secure
modulation schemes were developed. Before I discuss these schemes I want to show you
how noise does affect some of the basic modulation techniques.

One item that is common to all types of modulation is the loss of signal. You really
cannot ascribe this to interference; instead, the root cause is simply having a signal strength
that is presented too low at the receiver antenna. A low signal may be caused by several
factors, including operating the aircraft too far from the transmitter. The loss of signal
strength is due to spherical spreading, in other words, the further you are from the transmitter
the more diluted or weakened the signal becomes. Remember this spherical-spreading rule
of thumb (sometimes called the square law): twice the distance from the transmitter means
one quarter of the original signal strength at the receiver. For example, if you had one unit of
strength at a distance of 1 meter from the transmitter, there would be only 1/16,384 of the

Figure 6.2 PWM and PPM.

 132 B u i l d Y o u r O w n Q u a d c o p t e r

original strength at a 128 meter distance. That is a considerable reduction. Transmitter
strength or power is measured in dBm units that are defined as follows:

power dBm = 10 log (power in milliwatts)

Therefore, 1 milliwatt, or 1 mW, is equivalent to 0 dBm. Strictly speaking, the impedance
used in the dBm measurement should be 300 Ω resistive, but if it is not, the measurement is
still largely valid.

The Spektrum DX-8 transmitter that is used in my Elev-8 system has a maximum contact
output (almost touching the antenna) of -10 dBm. That is not a lot of absolute power, but it
is sufficient to its task. At one meter, the actual measured power is -25 dBm for the DX-8.
Every doubling of the distance per the spreading rule of thumb means a linear reduction of
10 dBm, which is why using dBm units is so handy. If you use the example from above, the
128 meter distance would mean that the transmitter power at the receiver antenna would be
-10 + (-70), or an absolute -80 dBm. This is a very small power level but remarkably well
within the Spektrum AR8000 receiver’s capability.

The other major culprit in signal loss is the line-of-sight restraint. The 2.4-GHz signals
operate in the RF frequency region where signals travel in a straight line or line of sight. If you
cannot see your aircraft, you can be pretty sure that it will not be able to receive your signal.
A simple maneuver, such as flying your aircraft to the side of your house, will likely cause
loss of signal due to losing line of sight. However, although it is true that the signal could
reflect off a nearby object, such as a neighbor’s house, I would not bet my quadcopter on that
happening. Obviously, flying your quadcopter so far away that you can no longer see it
would be bad on several levels, as discussed previously. You would also be flying it too high
and breaking some civil regulations to boot.

AM and FM Modulation and Noise
AM is probably the one modulation type that is most susceptible to noise because almost
any nearby electrical source can generate spurious radio waves. You are probably familiar
with the somewhat noisy AM radio in your car. It will often pick up noise from your car
engine as well as from nearby cars. The same condition may happen if you are operating
your model outside your home. For instance, a nearby gas lawn mower could generate noise
across a broad spectrum, especially if the spark plug is unshielded. AM receivers have no
means for detecting and counteracting interfering signals that may cause the devices they
are controlling to go out of control. AM is often used in extremely low-cost R/C toys, which
is fine, since they are usually quite small and will not harm people or things if they suddenly
go out of control. However, AM-based systems are to be avoided in the Elev-8 system or any
other quadcopter application. Using an AM system is to invite disastrous consequences.

FM is much more resistant to noise, as you might realize if you think about the car radio
example again. FM radio stations always sound clearer and mostly noise free when compared
with AM stations. Part of this clarity has to do with the broader spectrum allocated to an FM
station as well as to the nature of the modulation process. FM R/C systems use what is
known as a narrow band (NB) channel in which the carrier frequency is slightly changed in
response to the data-amplitude change. The narrower the frequency change or deviation,
the more susceptible the FM channel is to interference. You should understand that the
interference results from the receiver losing its lock, or phasing relationship, with the carrier
wave due to noise, not to the introduction of pops or clicks in the signal. Interference is most
often due to multiple reflections of the signal from buildings and terrain.

Another common source for FM interference is the presence of other NB FM transmitters
operating on the same frequency. It is commonly referred to as cross-channel interference.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 133

An R/C transmitter has no way of discriminating which signal it should respond to, so it
will attempt to respond to them all, if possible. What happens, as you may imagine, is chaos
where uncommanded actions may happen or the receiver simply does not respond at all.
There is really no easy way to counteract cross-channel interference other than by shutting
down all the interfering transmitters or relocating to a quiet location where you are operating
the only transmitter.

The nature of PM interference is almost identical to that of FM interference, as both are
quite similar in how they respond to interference.

Direct-Sequence Spread Spectrum
Direct-sequence spread spectrum (DSSS) is the modulation technique used in the Spektrum
DX-8 transmitter in my Elev-8 project. Before I start my discussion, I would like to point out
that Spektrum calls their modulation technique DSM2, which is simply a marketing term for
the DSSS standard. As far as I can determine, DSM2 is not different from DSSS; however,
Spektrum is not at all forthcoming regarding any additions they may have added to the
DSSS standard protocol. Therefore, I am assuming they are one and the same.

Further proof that DSM2 is DSSS is revealed by the transmitter module used in the
DX-8, which may be seen at the top, center of Figure 6.3. The shiny silver case contains
the Cypress Semiconductor CYRF6936 Wireless USB transceiver chip. The Cypress chip is
fully compliant with the DSSS standard, which means that the Spektrum DSM2 must also
be fully compliant.

Figure 6.3 Interior of Spektrum DX-8 transmitter.

 134 B u i l d Y o u r O w n Q u a d c o p t e r

DSSS is also the same modulation technique specified for use in the IEEE standard 802.11,
commonly known as Wi-Fi. Some key R/C DSSS specifications are shown in Table 6.2.

As DSSS is fairly complex, I will attempt to describe and discuss only the essential
features that are applicable to the R/C field. The essence of DSSS is to represent primary
data symbols with another set of symbols that are spread out in time. Figure 6.4 is my rough
sketch for this process.

The obvious question is why anyone would want to transform one symbol into many, as
is shown in the Figure 6.4. The answer lies in circumventing the problems that arise when
sending the primary symbols. Sending the primary, or raw, data is subject to noise and
interference, and there is no means to detect and correct errors that happen during the
transmission process. DSSS deliberately adds complexity to enable error detection and
correction and to reduce the likelihood of noise corruption of the primary data. Transmitting
the additional symbols also occupies more spectrum than just sending the primary symbols,
as shown in Figure 6.5.

You may clearly see from Figure 6.5 that the primary data spectrum is highly concentrated
around a specific frequency, while the DSSS is uniformly spread throughout the available
spectrum, hence the name “spread spectrum.” The tightly grouped primary data spectrum
is more susceptible to noise than the spread spectrum.

Five processes are used in DSSS to minimize interference and ensure that only the data is
sent and received between paired or bound transmitters and receivers. These processes are:

1. Automatic selection of dual transmit channels
2. Switching channels for every data frame transmitted

Specification Description

Frequency 2400 to 2483.5 MHz divided into eighty 1 MHz channels (the
extra bandwidth is allotted to edge guard bands)

Maximum power 1000 mW US, 100 mW Europe, and 10 mW/MHz Japan

Minimum power 1 mW

Rx sensitivity -80 dB

Table 6.2 Some Key R/C DSSS Specifications

Figure 6.4 Primary data symbols transformed to direct-sequence symbols.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 135

3. Transmission of start of packet (SOP) and data pseudorandom noise (PN) packets
4. Transmission of two sets of cyclic redundancy checks (CRC)
5. Transmission of the globally unique identifier (GUID)

I will briefly examine each process to provide you with some insights on how DSSS functions.

Automatic Selection of Dual Transmit Channels
When the DX-8 (or any other DSSS compliant transmitter) first transmits, it selects a pair of
channels from the 80 available. Theoretically, this would allow up to 40 DX-8’s to be operated
simultaneously in a small area without causing interference to each other.

Switching Channels for Every Data Frame Transmitted
The DX-8 will switch between the two channels for every data frame transmitted. This is a
special form of frequency hopping that will be discussed in the FHSS section. Every data
packet is transmitted twice, once on the first channel, then again on the second channel. It
takes only several microseconds to switch channels.

Transmission of SOP and PN Packets
The DX-8 system uses a set of five 72-byte PN codes. A PN code that is prepended to the
start of a data frame is called an SOP PN. A PN code that is prepended to the beginning
of the “real” data packet is also called a DATA packet. These pseudorandom-coded data
sets are so named because of how they are generated. True random data is exactly that:
totally randomized so that the next data character cannot be predicted from the previous.
Pseudorandom data, on the other hand, appears random in nature but is created by
a predefined algorithm in which all the random codes are precisely generated in a
deterministic fashion.

The receiver uses PN codes to determine whether or not to accept a particular
transmission. When a PN code is unmatched, it means that a particular data package was
not designated for that receiver and will be ignored. The SOP is 8 bytes long, while the DATA
packet is 16 bytes long. Both the SOP and DATA PN packets are extracted from one of the
five 72-byte PN sequences. Unique SOP/DATA pairs are also evenly distributed throughout
all 80 channels to further lessen any potential interference between DX-8 transmitters.

Transmission of Two Sets of Cyclic Redundancy Checks
A cyclic redundancy check (CRC) is a calculated number based on both the numerical values
contained in the whole data frame and a special manufacturing code value contained in the
transmitter chip firmware (which is explained below in the GUID section). The CRC uses

Figure 6.5 Primary data versus DSSS spectrum distribution.

 136 B u i l d Y o u r O w n Q u a d c o p t e r

an error-correcting algorithm to create a two-byte number, using the frame data and the
embedded code value. This number is then appended to the data frame and subsequently
transmitted. The receiver uses the received CRC value and compares it to a recalculated
value based on the received data frame. The receiver already knows the special embedded
code because of the binding (pairing) process that is described in another section. A
mismatch in the values indicates that a transmission error has occurred and the data frame
must be rejected.

A second CRC is also created by exclusive ORing the data frame containing the first CRC
with the hexadecimal value 0xFFFF. This just adds an additional error-checking capability to
DSSS for further redundancy.

Transmission of the GUID
The globally unique identifier (GUID) is a two-byte value (for DSSS purposes) that is generated
from a manufacturing code contained within the transmitter-chip firmware. The GUID for
the DX-8 is based on the very unique manufacturing code created when the Cypress
CYRF6936 chip was produced. This is very similar to how network adapter cards create
media access codes (MAC) that uniquely identify a computer to the network to which it is
attached. The MAC value is essentially the GUID for a networked computer.

The transmitter GUID is loaded into the R/C receiver during the binding process, which
is why a DSSS transmitter-receiver pair will not function without doing this binding process.
In addition, at least for the DX-8, all the positions and settings of the transmitter’s controls
at binding time are also stored in the receiver’s memory. These are the fail-safe positions that
will automatically be selected if the receiver loses connection with the transmitter.

The five DSSS processes practically guarantee that interference is eliminated and only
the paired transmitter will function with its receiver. This is a big confidence booster that has
promoted the DSSS standard among R/C enthusiasts. All currently available 2.4-GHz
systems are extremely reliable because they use either DSSS or FHSS. The latter technology
is discussed next.

Frequency-Hopping Spread Spectrum
Frequency-hopping spread spectrum (FHSS) adheres closest to the original spread spectrum (SS)
concept that was invented and patented during WWII. Actress and inventor Hedy Lamarr,
shown in Figure 6.6, originated the concept to help the Allies war effort.

Her patent envisioned the remote control of a torpedo with a radio carrier wave that
hopped or skipped over 88 frequencies, which incidentally is the number of keys on a
standard piano. She thought that the enemy would not be able to easily intercept or jam
radio-controlled signals that were hopping about the spectrum. She was absolutely correct
in her reasoning. It turned out that the U.S. government was not really interested in her
invention and never adopted it for use in the war. Years later, it was widely adopted when
researchers realized how robust SS was in minimizing corruption of communications from
interception and interference.

A transmitter-receiver system using FHSS needs to be bound or paired in the same
manner as a DSSS system. Most readers will be familiar with the Bluetooth (BT), which is
designed to be a close-range personal area network (PAN). BT uses the FHSS modulation
scheme to minimize interference, since many BT-equipped devices are often used in close
proximity to each other. Of course, the power levels are much higher when FHSS is used for
R/C purposes than when it is used for BT to couple your cell phone with a remote microphone/
earpiece.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 137

Binding or Pairing
Binding for DSSS refers to the process in which the transmitter GUID and the fail-safe data
are loaded into receiver firmware. The GUID is a parameter that uniquely identifies the
transmitter to the receiver, and it is a prerequisite that the binding process be performed
before any R/C operations take place.

Futaba is another major manufacturer of 2.4-GHz R/C systems that use FHSS as their
modulation scheme. They term their FHSS technology as FASST, which stands for Futaba
Advanced spread spectrum Technology. Their binding or pairing process consists of transferring
the GUID and frequency hopping pattern from the transmitter to the receiver. Most readers
are aware of the pairing operation that is normally required prior to using a non-R/C BT
device. This BT pairing operation usually requires that the receiving device be put into a
scan mode to identify any nearby BT transmitters. The users then enter a predefined code
once the transmitter is identified and selected. The BT receiver will then load the transmitter’s
GUID and hopping pattern into the receiver’s EEPROM so that it will no longer need to be
paired the next time it is used with that particular transmitter. The actual Futaba binding
process is very simple:

•	 Turn on the transmitter. Check the LED on the back of the transmitter to make sure
that it is green. If so, proceed to the next step. If not, power down the transmitter and
turn it on once again.

•	 Turn on the receiver.
•	 With the receiver on, press and hold the ID Set button (located between the two

antenna exits) for more than one second. When the linking process has completed
the receiver’s LED will change to a solid green.

Figure 6.6 Hedy Lamarr, creator of the first spread spectrum patent.

 138 B u i l d Y o u r O w n Q u a d c o p t e r

The procedure for binding a DX-8 to a Spektrum AR8000 receiver is a bit different from
the BT pairing. I will use an experimental setup that is shown in diagram form in Figure 6.7
to demonstrate the process. The complete experiment will be discussed later in this chapter.
The binding steps are listed below:

•	 Ensure that the battery is not connected to the ESC. The DX-8 should also be turned
off.

•	 Put the bind plug into the BIND/DAT port on the AR8000. Figure 6.8 shows the
plug in place and the ESC BEC plugged into the throttle port.

Figure 6.7 Diagram of the experimental R/C test system.

Figure 6.8 AR8000 bind plug.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 139

•	 Plug the power into the receiver. (I just connected the battery in the experimental
setup.) The LED on the AR8000 will start to blink.

•	 Move the DX-8 throttle to its minimum position for the experimental setup.
•	 Turn on the DX-8 power, while depressing and holding the TRAINER/BIND button.

Figure 6.9 shows this button.
•	 The AR8000 will then bind with the DX-8. It should take only a few seconds. The

LED on the AR8000 will stop blinking and remain on.
•	 Remove the bind plug from the AR8000. Do not lose this plug. You will need it the

next time you have to bind your receiver with a DX-8 transmitter.

Note: I strongly advise you to rebind your Elev-8 once you have set it to its final flight configuration.
That way, you can be assured that all the fail-safe settings are stored in the AR8000 memory.

Next, I will demonstrate how the DX-8 system functions now that I have taken you
through a fairly thorough examination of the theory behind a modern DSSS system.

Experimental R/C System Demonstration
I will be using the same experimental system that I introduced in the last chapter to explore
the actual functioning of the DX-8 transmitter and the accompanying AR8000 receiver. I
removed the propeller for the initial full-range tests because I wanted to perform a test at a
100% throttle setting, which is not safe to do with the propeller attached.

The complete experimental setup is shown in Figure 6.10. I did bind the DX-8 to the
AR8000 so that it would function as needed for the tests.

I also added some test-point connections to two of the ESC leads connecting to the motor
so that I would have some place both to monitor the motor power waveforms and to connect

Figure 6.9 DX-8 TRAINER/BIND button.

 140 B u i l d Y o u r O w n Q u a d c o p t e r

the r/min telemetry sensor. Figure 6.11 is a photo of one of these test-point extensions.
Notice that I used EC3 connectors throughout, which standardizes all the connection points.

The initial test simply generates the receiver waveform for a zero throttle position.
Figure 6.12 shows the waveform out of the AR8000 going to the ESC with the DX-8 throttle
at its minimum setting. The automated measurements at the bottom of the waveform show
a 1.11-ms high-level pulse width with a 22-ms period, which is equivalent to sending a

Figure 6.11 Test point extension cable.

Figure 6.10 Actual experimental setup.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 141

0 r/min command to the motor. This is confirmed by my observations that no motor rotations
were happening and that there were zero power pulses sent from the ESC to the motor, as
shown in Figure 6.13.

The next test generates the waveform for a 100% throttle position. Figure 6.14 shows the
waveform out of the AR8000 with the throttle set at 100%. This waveform now shows a
1.88-ms pulse-width again with a 22-ms period, which is the 100% throttle setting. The motor

Figure 6.12 The AR8000 0% throttle channel output.

Figure 6.13 The ESC-to-motor waveform at 0% power.

 142 B u i l d Y o u r O w n Q u a d c o p t e r

was observed spinning at a very high rate, and the power pulses from the ESC to the motor
were very evident, as shown in Figure 6.15.

This 100% power-pulse waveform is remarkably clear with just a few switching transient
pulses obvious in the waveform. You can easily view the up and down ramps that are on
either side of the power pulse. I discussed how ramping was configured in the last chapter’s
ESC section but not why it is needed. Ramping is required to allow sufficient time for the
electromagnetic (EM) fields located at the stator poles to both build and decay. A synchronized
rotating EM field cannot be established and maintained without allowing enough transition
time, which is the reason for the ramps.

Figure 6.15 ESC motor waveform at 100% power.

Figure 6.14 AR8000 100% throttle channel output.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 143

I also captured the waveforms at the throttle 50% setting, which was set using the
marked midpoint of the throttle control. Figure 6.16 shows a pulse width of 1.50 ms and
22-ms period.

The corresponding power pulses for the 50% setting are shown in Figure 6.17. Notice
that it is considerably noisier than the 100% power waveform. I am not sure why this is the
case, but it may be due in part to a longer cycle time of 800 microseconds (µsec) versus
700 µsec for the 100% power setting.

Figure 6.16 The AR8000 50% throttle channel output.

Figure 6.17 ESC motor waveform at 50% power.

 144 B u i l d Y o u r O w n Q u a d c o p t e r

I decided that it would be useful to capture a waveform showing the simultaneous
power pulses for all three motor leads. This waveform is shown in Figure 6.18 with the
motor operating at a 100% setting.

My careful inspection revealed that all three power pulses repeat every 750 µsec or
approximately 1.333 kHz. I was a bit curious to know if I could relate that frequency to the
audible noise emanating from the motor. I downloaded a free app to my smartphone that
provided a time versus frequency spectral analysis. Figure 6.19 shows the phone screen with
the spectral plot recording the motor noise when the motor is operating at 100% power.

Many spectral lines are present in the plot, including one at about 1.4 kHz. The strongest
one is around 2.8 kHz, which is the second harmonic of the 1.4-kHz frequency. From my

Figure 6.19 Smartphone audio spectral plot.

Figure 6.18 Three-motor-lead waveform at 100% power level.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 145

experience as an acoustics engineer, it is not an unusual occurrence to have a second
harmonic as the loudest component in an audio spectrum. Of course, the audio noise would
become much louder, and the components would change when a propeller is attached to the
running motor.

I conducted another pulse-width test on the elevator R/C channel. The DX-8 elevator
control stick is on the right side and is spring loaded to stay in a center position. I measured
the pulse width to be 1.5 ms when the stick was centered. I then pushed the throttle all the
way up, and the width changed to 1.9 ms. Pushing it all the way down produced a 1.1-ms
pulse width. The pulses also repeated at a 22-ms rate, which is exactly the same as the throttle
control pulses.

The next portion of my experiment was to determine how the rest of the main AR8000
receiver channels functioned with regard to the pulses generated. I tested the remaining
channels with the USB oscilloscope and recorded the results as shown in Table 6.3.

Measuring R/C Channel Pulse Width and Rate with the BOE
I realize that most readers will not have the sophisticated USB oscilloscope that I used and
may not even have a regular oscilloscope. I highly recommend that you get one if you want
to modify your quadcopter or simply to conduct experiments. Many highly capable two-
channel units are on the market with a few at, or even below, $400. Readers lacking an
oscilloscope can use the following programs written and executed on the BOE to measure
both pulse widths and rates. Remarkably, these two programs report measurements that
match very closely to those achieved with the USB oscilloscope.

The BOE simply uses a normal servo cable to plug into the selected R/C receiver channel,
as shown in Figure 6.20.

Channel Name Position Pulse width (ms) Remarks

Aileron Full left
Full right
Centered

1.897
1.117
1.499

22-ms pulse rate

Rudder Full left
Full right
Centered

1.891
1.105
1.499

22-ms pulse rate

Gear 0
1

1.580
1.462

22-ms pulse rate

Aux 1 (labeled as
FLAP on DX-8)

0
1
2

1.855
1.462
1.113

22-ms pulse rate

Aux 2 0
1
2

1.899
1.505
1.112

22-ms pulse rate

Aux 3 Fully CCW
Center
Fully CW

1.899
1.500
1.112

22-ms pulse rate
DX-8 chirps as the knob is rotated
through the center position.

Table 6.3 Test Results for Remaining AR8000 Channels

 146 B u i l d Y o u r O w n Q u a d c o p t e r

BOE Pulse-Width Measurements
The first program that I will discuss is named PWM2C_SIGDemo, which measures pulse
width. The program has four separate Spin components that are required for it to execute. I
am showing you only two of the four, since the other two, while needed, do not function in
the actual measurement process. They support text strings and communication with the
Propeller serial Terminal (PSerT) program, which is used to display the results.

The essential listing of the PWM2C_SIGDemo program is:

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 _baudRateSpeed = 250_000
 _newLineCharacter = 13
 _homeCursorCharacter = 1
 _clearToEndOfLineCharacter = 11

 _receiverPin = 31
 _transmitterPin = 30
 _leftServoPin = 14 ‘changed from 0 in the original for the
 BOE
 _rightServoPin = 15 ‘1 in the original

Figure 6.20 BOE connected to the AR8000 throttle channel.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 147

OBJ
 sig: “PWM2C_SIGEngine.spin”
 com: “RS232_COMEngine.spin” ‘not discussed – for serial comm
 str: “ASCII0_STREngine.spin” ‘not discussed – for text
 manipulation

PUB demo
 ifnot(com.COMEngineStart(_receiverPin, _transmitterPin,
_baudRateSpeed) and { } sig.SIGEngineStart(_leftServoPin,
_rightServoPin, 100))
 reboot

 repeat
 com.transmitString(string(“Left: “))
 com.transmitString(1 + str.integerToDecimal(sig.
 leftPulseLength, 10))
 com.transmitString(string(_clearToEndOfLineCharacter,
 _newLineCharacter, “Right: “))
 com.transmitString(1 + str.integerToDecimal(sig.
 rightPulseLength, 10))
 com.transmitString(string(_clearToEndOfLineCharacter,
 _homeCursorCharacter, “Servo Pulse Length’s”,
 _newLineCharacter))

This program is the driver that uses an “engine” object to perform the pulse-width
measurement and then reports the results back to the PSerT application for user display.
The heart of this program is the forever-repeating loop that sends a series of strings over
to the PSerT. The pulse-length values are acquired in the two object-method calls
sig.leftPulseLength and sig.rightPulseLength. The sig object is a reference
to a program named PWM2C_SIGEngine, which is listed below in an abbreviated manner.
I did add some comments to key code lines to help explain what was happening in
the code.

VAR
 long leftLength, rightLength, stack[7]
 byte cogNumber, leftPinNumber, rightPinNumber, timeoutPeriod

PUB leftPulseLength ‘’ 3 Stack Longs ‘ Returns the servo
 channel’s pulse length in
 microseconds.
 return leftLength

PUB rightPulseLength ‘’ 3 Stack Longs ‘ Returns the servo
 channel’s pulse length in
 microseconds.
 return rightLength

 148 B u i l d Y o u r O w n Q u a d c o p t e r

PUB SIGEngineStart(leftServoPin, rightServoPin, timeout) ‘’ 9 Stack
 Longs

‘ Starts up the SIG driver running on a cog. Returns true on
 success and false on failure.
‘ LeftServoPin - Pin for left channel servo pulse width input.
 Between (0 - 31).
‘ RightServoPin - Pin for right channel servo pulse width input.
 Between (0 - 31).
‘ Timeout - The timeout period before zeroing the channel pulse
 lengths in centiseconds. Between 0 and 100. (Try 10).

 SIGEngineStop
 if(chipver == 1) ‘checks Prop chip version number. Should be 1
 for current
 version
 leftPinNumber := ((leftServoPin <# 31) #> 0) ‘ensures pin #
 in the range 0 to 31
 rightPinNumber := ((rightServoPin <# 31) #> 0) ‘ditto
 timeoutPeriod := ((timeout <# 100) #> 0) ‘timeout between 0
 and 100
 cogNumber := cognew(SIGDriver, @stack) ‘start a new cog
 with measuring code
 result or= ++cogNumber ‘result is a predefined
 variable which in this case
 stores the cog number

PUB SIGEngineStop ‘’ 3 Stack Longs

‘ Shuts down the SIG driver running on a cog.

 if(cogNumber)
 cogstop(-1 + cogNumber~)

PRI SIGDriver : leftTimeout | rightTimeout ‘ 7 Stack Longs
 ctra := constant(%0_1000 << 26) + leftPinNumber ‘ sets the cog’s
 A counter to start counting as soon as a positive
 edge is detected on the leftPinNumber pin
 ctrb := constant(%0_1000 << 26) + rightPinNumber ‘sets the cog’s
 B counter to start counting as soon as a positive
 edge is detected on the rightPinNumber pin

 frqa := frqb := 1
 leftTimeout := rightTimeout := cnt

 repeat

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 149

 if(phsa < 0) ‘ phsa is a phase lock loop register.
 It is used to store a count
 proportional to the high pulse width
 leftLength := 0
 phsa := 0

 ifnot(ina[leftPinNumber] or not(phsa))
 leftLength := ((||(phsa~)) / (clkfreq / 1_000_000))
 leftTimeout := cnt

 if((cnt - leftTimeout) > ((clkfreq / 100) * timeoutPeriod))
 leftLength := 0

 if(phsb < 0)
 rightLength := 0
 phsb := 0

 ifnot(ina[rightPinNumber] or not(phsb))

 rightLength := ((||(phsb~)) / (clkfreq / 1_000_000))
 rightTimeout := cnt

 if((cnt - rightTimeout) > ((clkfreq / 100) * timeoutPeriod))
 rightLength := 0

I would like to point out that no assembly language code was required for this Spin
program, since all the timing was accomplished by using the built-in cog counters and

Figure 6.21 A Propeller Serial Terminal display of two servo channels.

 150 B u i l d Y o u r O w n Q u a d c o p t e r

registers. It is quite possible to resolve timing down to a 12.5-nanosecond (ns) interval by using
an 80-MHz system clock with the cog counters. That is impressive measurement accuracy.

Figure 6.21 is a screenshot of the PSerT display with the throttle channel connected to
servo pin 14 and the Aux 3 channel connected to servo pin 15.

The DX-8 throttle position was set at 100%, and the Aux 3 knob was at the 50% position
for this test. I also connected the USB oscilloscope to the receiver’s throttle channel and
confirmed that it measured precisely the same value that was displayed on the PSerT screen.

The next program I will discuss concerns the measurement of pulse rates.

BOE Pulse-Rate Measurements
The second program that I will discuss is named jm_freqin_demo, which measures pulse
frequency. Pulse frequency is not as important a parameter as pulse width; however, you
should measure it to ensure that pulses are arriving at a sufficient rate to constantly update
the flight-control board and/or servos. A pulse rate that is too slow could lead to loss of
control in the same way that loss of a signal would cause your aircraft to go out of control.
An abbreviated listing of jm_freqin_demo is shown below:

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

CON
 #0, CLS, HOME, #8, BKSP, TAB, LF, CLREOL, CLRDN, CR ‘ PST format
 control

OBJ
 fc : “jm_freqin”
 term : “jm_txserial”

PUB main | f

 fc.init(0) ‘ freq cntr on p0

 term.init(30, 115_200) ‘ start terminal
 waitcnt(clkfreq/10 + cnt)
 term.tx(CLS)

 ‘ setup cog 1 frequency generation
 ‘ -- note: you may see jitter at high frequencies
 ‘ due to ctrx pwm behavior

 ‘ frqx setting = frequency × 2^32 ÷ 80_000_000

 ctra := %00100 << 26 ‘ nco/pwm note: not used
 in my version
 ctra[5..0] := 0 ‘ use p0

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 151

 ‘frqa := 134_218 ‘ 2500 Hz
 frqa := 3_222 ‘ 60 Hz
 ‘frqa := 672 ‘ ~12.5 Hz
 dira[0] := 1 ‘ make p0 output

 repeat
 term.str(string(HOME, “Freq: “))
 f := fc.freq ‘ get frequency
 if f > 0 ‘ valid?
 term.dec(f/10) ‘ print whole part
 term.tx(“.”)
 term.dec(f//10) ‘ print fractional part
 term.str(string(“ Hz”, CLREOL))
 else
 term.str(string(“???”, CLREOL))
 waitcnt(clkfreq + cnt)

This program makes use of another Spin program named jm_freqin, which actually
measures and displays the pulse frequency on the Propeller Serial Terminal. The program
was created by Jon “JonnyMac” McPhalen (also known as Jon Williams), who is a prolific
contributor to the Parallax forums. Jon also made provision for self-generating pulses to test
the program. Those pulses emit from pin 0. However, I used pin 14 as an input, since that is
one of the servo ports on the BOE. The jm_freqin program is shown below with Jon’s
introductory comments included because I think they are very helpful in understanding
how this program functions:

{{
This object uses ctra and ctrb of its own cog to measure the period
of an input waveform. The period is measured in clock ticks; this
value can be divided into the Propeller clock frequency to
determine the frequency of the input waveform. In application, the
period is divided into 10x the clock frequency to increase the
resolution to 0.1Hz; this is especially helpful for low
frequencies. Estimated range is 0.5Hz to ~40MHz (using 80MHz
clkfreq).

The counters are setup such that ctra measures the high phase of
the input and ctrb measures low phase. Measuring each phase
independently allows the input waveform to be asymmetric. In order
to prevent a loss of signal from causing an erroneous value from
the freq() method the fcCycles value is cleared after a valid
frequency is calculated; this means that you should not call this
method at a rate faster than the expected input frequency.
}}

VAR

 152 B u i l d Y o u r O w n Q u a d c o p t e r

 long cog
 long fcPin ‘ frequency counter pin
 long fcCycles ‘ frequency counter cycles

PUB init(p) : okay
‘’ Start frequency counter on pin p
‘’ -- valid input pins are 0..27

 if p < 28 ‘ protect rx, tx, i2c
 fcPin := p
 fcCycles := 0
 okay := cog := cognew(@frcntr, @fcPin) + 1
 else
 okay := false

PUB cleanup
‘’ Stop frequency counter cog if running

 if cog
 cogstop(cog~ - 1)

PUB period
‘’ Returns period of input waveform

 return fcCycles

PUB freq | p, f
‘’ Converts input period to frequency
‘’ -- returns frequency in 0.1Hz units (1Hz = 10 units)
‘’ -- should not be called faster than expected minimum input
 frequency

 p := period
 if p
 f := clkfreq * 10 / p ‘ calculate frequency
 fcCycles := 0 ‘ clear for loss of input
 else
 f := 0

 return f

DAT

 org 0

frcntr mov tmp1, par ‘ start of structure

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 153

 rdlong tmp2, tmp1 ‘ get pin#

 mov ctra, POS_DETECT ‘ ctra measures
 high phase
 add ctra, tmp2
 mov frqa, #1

 mov ctrb, NEG_DETECT ‘ ctrb measures
 low phase
 add ctrb, tmp2
 mov frqb, #1

 mov mask, #1 ‘ create pin
 mask
 shl mask, tmp2
 andn dira, mask ‘ input in this
 cog

 add tmp1, #4
 mov cyclepntr, tmp1 ‘ save address
 of hub storage

restart waitpne mask, mask ‘ wait for 0
 phase
 mov phsa, #0 ‘ clear high
 phase counter

highphase waitpeq mask, mask ‘ wait for pin
 == 1
 mov phsb, #0 ‘ clear low
 phase counter

lowphase waitpne mask, mask ‘ wait for pin
 == 0
 mov cycles, phsa ‘ capture high
 phase cycles

endcycle waitpeq mask, mask ‘ let low phase
 finish
 add cycles, phsb ‘ add low phase
 cycles
 wrlong cycles, cyclepntr ‘ update hub

 jmp #restart

POS_DETECT long %01000 << 26

 154 B u i l d Y o u r O w n Q u a d c o p t e r

NEG_DETECT long %01100 << 26
tmp1 res 1
tmp2 res 1
mask res 1 ‘ mask for frequency input
 pin

cyclepntr res 1 ‘ hub address of cycle
 count

cycles res 1 ‘ cycles in input period

 fit 492

DAT

This program utilizes both the A and B cog counters as noted in Jon’s comments. I will
not step through all the assembly language lines as I have done in several previous programs.
However, I will mention that using either assembly language or C language routines is the
only way to handle very high-speed measurements, such as those made by this program.
I have not done it myself, but Jon estimates that this program could measure frequencies
as high as 40 MHz, which is incredible considering that the Prop clock rate is only 80 MHz.

The other Spin program that is used in this frequency-measuring application is named
jm_txserial, which is Jon’s adaptation of a fairly standard Spin program named Full_Duplex.
It is a common and recommended procedure to use existing open source code and adapt it
to your purposes, as Jon has done in this case. I will not discuss jm_txserial specifically other
than to say it is a highly efficient communications program that communicates to the PSerT
program to display the main program results.

Figure 6.22 Measuring the throttle channel pulse frequency.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 155

I connected the AR8000 throttle channel to pin 14 servo port, as was shown in Figure
6.20. I next ran the jm_freqin_demo program and started the PSerT application to view the
results. This is shown in Figure 6.22.

The displayed frequency of 45.4 Hz is equivalent to a period of 22 ms, which is computed
by taking the reciprocal of the frequency. The 22-ms value exactly matches the pulse rate I
measured using the USB oscilloscope. I was impressed with this outcome, since programs
often promise certain results but do not deliver on them. That was not the case here; the
frequency-measuring capability is very accurate. Just ensure that you keep the maximum
input voltage levels at or below 3.3 V, which is the Prop chip’s maximum allowable input.

The last section of this chapter deals with telemetry, which you will find very helpful
when operating your quadcopter.

Telemetry
The DX-8/AR8000 R/C system has an optional feature that provides telemetry in addition
to normal control functions. Telemetry is the automated transfer of data from the aircraft
back to the transmitter, which in this case, is also functioning as a receiver. The Spektrum
system provides for four data types to be sent via telemetry:

1. Battery voltage
2. Temperature
3. r/min
4. Altitude

Which data type is sent depends on the sensor used to create the initial data. Spektrum
utilizes a telemetry module named the TM1000. It is the core of their DSM telemetry system
and is shown in Figure 6.23.

Figure 6.23 The Spektrum TM1000 telemetry module.

 156 B u i l d Y o u r O w n Q u a d c o p t e r

Shown alongside the TM1000 module is a plastic bind stick that allows you to press a
very tiny button that is visible on the left side of the module. It takes a bit of dexterity during
the bind process to power on the receiver-telemetry module and to simultaneously press the
bind button during the binding process.

Three ports are visible on the bottom of the module:

1. RPM
2. TEMP/VOLT
3. DATA

The DATA port is committed to link the TM1000 module to the AR8000 receiver where it
plugs into the BIND/DAT port. The RPM sensor plugs into the RPM port, and a supplied
Y-Connector cable plugs into the TEMP/VOLT port. You will receive a temperature sensor
and a voltage sensor as part of the TM1000 package. The RPM sensor is a separately
purchased item, and depends on what motor type you are using. Fuel-driven engines use a
different sensor from the one used for a BLDC motor. Therefore, I purchased a BLDC sensor.
Both the voltage and temperature sensors plug into the Y-connector mentioned above.
Figure 6.24 shows the AR8000, TM1000, and the three sensors discussed above.

I connected the sensors to the experimental system and operated the system at about a
50% throttle setting. In Figure 6.25, the DX-8 LCD screen shows the battery voltage, r/min,
and temperature.

Figure 6.24 The Telemetry system with sensors.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 157

The r/min reading is low because I did not properly configure either the number of
poles or the preset ratio in the telemetry setup menu. It should be approximately 4100 r/min
instead of the 1216 number shown in the figure. The temperature reading is the ambient
temperature around the setup, and the voltage is the LiPo's battery level powering
everything.

A four-pin socket labeled as X-BUS is visible in Figure 6.23 next to the BIND switch.
Figure 6.26 is a close-up photo of this socket clearly showing the four pins. This socket was
designed by Spektrum to allow these additional sensors to be attached to the TM1000:

•	 G-Force three-axis accelerometer (low range—up to 8 g’s)
•	 G-Force three-axis accelerometer (high range—up to 40 g’s)
•	 High Current sensor
•	 Airspeed
•	 PowerBox
•	 JetCat

Each of the sensors listed above comes with an extension cable that is plugged into the
X-BUS socket. Each sensor also has two sockets allowing for a daisy chain to be formed if

Figure 6.25 The DX-8 LCD showing real-time telemetry.

Figure 6.26 The X-BUS socket.

 158 B u i l d Y o u r O w n Q u a d c o p t e r

more than one sensor is to be used at the same time. Figure 6.27 shows the High Current
sensor with the two X-BUS sockets shown on the sensor body. Also, notice that this sensor
already comes equipped with EC-3 connectors, which make the connection to the LiPo
battery very easy if you use that type of connector.

Spektrum has not published any information regarding the X-BUS; however, it is
reported to be an I2C bus as a result of some clever reverse engineering by an R/C aficionado.
This bus uses a minimum of three wires, while Spektrum adds another one for some
additional functions. The four connections are:

1. SDA—Serial data
2. SCL—Clock line
3. UBatt—Proprietary Spektrum function
4. GND—Ground

The Inter-Integrated Circuit interface or I2C (pronounced eye-two-cee or eye-squared-
cee) is also a synchronous serial data link. Figure 6.28 is a block diagram of the I2C interface

Figure 6.28 The I2C block diagram.

Figure 6.27 The X-BUS High Current sensor.

 C h a p t e r 6 : R a d i o - C o n t r o l l e d S y s t e m s a n d T e l e m e t r y 159

showing one master and one slave. This configuration is also known as a multidrop or bus
network.

The I2C supports more than one master as well as multiple slaves. This protocol was
created by the Philips Company in 1982 and is a very mature technology, meaning it is
extremely reliable. Only two lines are used: SCLK for serial clock and SDA for serial data.
You will need to purchase and cannibalize the extension cable shown in Figure 6.29 to get
access to the X-BUS.

The only caution I would add, if you are considering using the I2C bus to transfer data,
is to remember that it is a low-speed bus. The I2C bus can operate at up to 400 kHz, but it was
determined that the X-BUS operates only at 100 kHz. That seems fast, but it is actually fairly
slow, when considering the volume of data that some sensors generate.

This last section on telemetry wraps up this chapter. The next chapter examines R/C
servos that are used extensively in R/C aircraft. While the basic Elev-8 does not use servos
per se, it would be in your best interest to learn about servos and how to best incorporate
them into an R/C system.

Summary
I began this chapter with a brief history of R/C development and its rapid progression after
the transistor was invented.

Next, I discussed the various modulation schemes used with R/C systems, focusing on
PPM and PWM modes. I also discussed the importance of counteracting noise, which is the
main culprit in loss-of-control situations. I compared how the various modulation types
cope with noise and showed that AM is the worst, FM is somewhat better, and finally, that
DSSS is the best.

DSSS was next discussed in depth because it is a superior modulation technique and is
the type used in my Elev-8 R/C system. The FHSS was also mentioned, since it is the major
competitive R/C modulation scheme used in 2.4-GHz systems.

Then I discussed the binding process between Spektrum’s DX-8 transmitter and the
AR8000 receiver. Binding must be done before a DSSS system is used because certain
transmitter data must be stored in the receiver’s EEPROM. I explained the reasons for this in
the DSSS write-up.

The next section dealt with an experiment that was designed to demonstrate how the
R/C transmitter and receiver function using PWM. I used a slightly modified setup from

Figure 6.29 The X-BUS extension cable.

 160 B u i l d Y o u r O w n Q u a d c o p t e r

the experiment shown in Chapter 5. Several USB oscilloscope screenshots showed the pulse
waveforms associated with 0, 50, and 100 percent throttle settings. I also discussed all the
remaining AR8000 channels showing that they operated in a similar fashion to the throttle
channel.

A demonstration of how the Propeller BOE could be used to measure pulse width was
shown along with the majority of the program code. The BOE and USB oscilloscope results
were practically identical.

Another BOE program was run to show you how to directly measure pulse frequency.
You determine the pulse rate by calculating the reciprocal of the frequency. A measure of the
pulse frequency or rate is an important number because it ensures that your R/C system is
updating at a fast enough rate. An update that is too slow could lead to loss of control.

The chapter concluded with a detailed discussion of the optional Spektrum telemetry
system. I showed you all of the standard sensors and discussed some of the more advanced
sensors. I also discussed Spektrum’s X-BUS, which in reality, is the standard I2C serial bus.
I mentioned that this bus could be used to add your own sensors and even microcontrollers
onto the telemetry bus.

chapter 7
Servo Motors and

Extending the Servo
Control System

Introduction
In this chapter, I will show you what makes up a standard R/C servo motor, as well as how
to control one. I have already provided a considerable amount of information in the three
previous chapters on how pulse signals are used to control servos. Now it is time to reveal
the inner workings of a servo motor so that you will understand how and why it operates as
it does and be aware of its limitations and constraints when you are using it. This “reveal”
will focus on how a specific pulse width translates into a specific servo-motor motion.

I will also discuss how a standard servo motor can be converted into a continuous rotation
(CR) servo motor. CR motors operate a bit differently than standard ones do. The CR motor
has the pulse width that directly controls the continuous angular speed or rotation instead
of providing a limited angular motion as the standard servo motor does. CR servo motors
are often used as replacements for conventional motors in which low torque requirements
exist, such as for powering small R/C cars or boats. I always use CR servos to power my
robotic projects, and they seem to function quite nicely.

The next section describes how I built a system to measure the pulse widths for up to
three of the R/C channels. I will also show you how to display the results on a 4 × 20 LCD
character display. This system uses the Parallax Board of Education (BOE) and can be made
totally portable by powering it all from a standard 9-V battery. My discussion of the software
includes quite a bit of information regarding pointers and indirection, which are often a
source of confusion for beginning programmers. Also, in the software, I point out how a Spin
program measures pulse width in a way that has not been previously shown in this book.

This chapter concludes with a discussion on two ways to extend the standard servo-
control system to accomplish functions that enhance the Elev-8 platform. The first one
controls the onboard LED lighting strips mounted on the bottom of the Elev-8 booms. The
second one controls a tilting mechanism for a remote-controlled, first-person viewer (FPV),
which can be attached to the bottom of the Elev-8. The actual FPV will be described in a later
chapter. Now, I want to focus on only the servo-control aspect of this system.

Exploring a Standard R/C Analog Servo Motor
Figure 7.1 is a partially transparent view of the inner workings of a standard R/C servo
motor. I would like to point out five components in this figure:

161

 162 B u i l d Y o u r O w n Q u a d c o p t e r

1. Brushed electric motor—left side
2. Gear set—just below the case top
3. Servo horn—attached to a shaft protruding above the case top
4. Feedback potentiometer—at the bottom end of the same shaft with the horn
5. Control PCB—bottom on the case to the motor’s right

The electric motor is just an inexpensive, ordinary motor that probably runs at
approximately 12,000 r/min unloaded. It typically operates in the 2.5- to 5-V DC range and
likely uses less than 200 mA, even when fully loaded. The servo-torque advantage results
from the motor spinning the gear set so that the resultant speed is reduced significantly,
which in turn, results in a very large torque increase as compared to the motor’s ungeared
rating. A typical motor used in this servo class might have a 0.1 oz-in torque rating while the
servo-output torque could be about 42 oz-in, which is a 420 times increase in torque
production. Of course, the speed would be reduced by the same proportional amount, going
from 12,000 r/min to about 30 r/min. This slow speed is still fast enough to move the servo
horn to meet normal R/C requirements.

The feedback potentiometer attached to the bottom of the output shaft is a key element
in positioning the shaft in accordance with the pulses being received by the servo electronic-
control board. You may see the feedback potentiometer clearly in Figure 7.2, which shows
another image of a disassembled servo.

Figure 7.1 Inner view of a standard R/C servo motor.

Figure 7.2 Disassembled servo showing the feedback potentiometer.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 163

I will tell you more about the potentiometer’s function during the control-board
discussion. For now, I will simply state that it forms part of a closed-loop control system that
I introduced in Chapter 2. If you skipped that part, it might be a good time to go back and
review the topic, as it applies to this case.

The servo horn is simply a plastic part that slips into grooves at the end of the output
shaft and is used as part of a mechanical actuating mechanism. It is held in place with a very
small machine screw. The shaft grooves ensure that the horn does not slip under load. Figure
7.3 shows a close-up of some typical servo horns.

The electronics board is the heart of the servo and controls how the servo functions.
I will be describing an analog-control version, since that is, by far, the most popular type
used in low-cost servo motors. I will mention the digital version at the end of this section
and compare it to the analog version. Figure 7.4 shows a Hitec control board that is in place
for the model HS-311 that I used for my demonstration system.

The main chip is labeled HT7002, which is a Hitec private model number as well as
I could determine. This chip functions in the same way as a commercially available chip by
Mitsubishi with the model number M51660L. I will refer to the M51660L in my discussion,
since it is used in a number of other manufacturer’s servo motors and would be representative
of any chip that is used in this situation. The Mitsubishi chip is entitled “Servo Motor
Controller for Radio Control,” and its pin configuration is shown in Figure 7.5.

Figure 7.3 Servo horns.

Figure 7.4 Hitec HS-311 electronics board.

 164 B u i l d Y o u r O w n Q u a d c o p t e r

Don’t be put off by the different physical configuration between the HT7002 in Figure
7.4 and the chip outline in Figure 7.5, as it is often the case that identical chip dies are placed
into different physical packages for any number of reasons. The M51660L block diagram
shown in Figure 7.6 illustrates the key functional circuits incorporated into this chip.

Now I will provide an analysis that will go hand-in-hand with the illustration of the
demonstration circuit shown in Figure 7.7, which was provided in the manufacturer’s data
sheet (as were the previous two figures 7.4 and 7.5).

Figure 7.5 Mitsubishi M51660L pin configuration.

Figure 7.6 M51660L block diagram.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 165

The analysis below should help you understand how an analog servo functions and
why there are certain limitations inherent in its design.

1. The start of a positive pulse appearing on the input line (pin 5) turns on the set/reset
(RS) flip-flop and also starts the one-shot multivibrator running.

2. The RS flip-flop works in conjunction with the one-shot to form a linear one-shot, or
monostable, multivibrator circuit whose “on-time” is proportional to the voltage
appearing from the tap on the feedback potentiometer and the charging voltage from
the timing capacitor attached to pin 2.

3. The control logic starts comparing the input pulse to the pulse being generated by
the one-shot.

4. This ongoing comparison results in a new pulse called the error pulse, which is then
fed to the pulse-stretcher, deadband, and trigger circuits.

5. The pulse-stretcher output ultimately drives the motor control circuit that works in
combination with the directional control inputs that originate from the RS flip-flop.
The trigger circuits enable the PNP transistor driver gates for a time period directly
proportional to the error pulse.

6. The PNP transistor driver-gate outputs are pins 4 and 12, which control two external
PNP power transistors, which can provide over 200 mA to power the motor. The
M51660L chip can provide only up to 20 mA without using these external transistors.
That is too little of a current flow to power the motor in the servo. The corresponding
current sinks (return paths) for the external transistors are pins 6 and 10.

7. The 560-kΩ resistor (R f), connected between pin 2 and the junction of one of the
motor leads and pin 6, feeds the motor’s back electromotive force (EMF) voltage into
the one-shot. Back EMF is created within the motor stator winding when the motor
is coasting or when no power pulses are being applied to the motor. This additional
voltage input results in a servo damping effect, meaning that it moderates or lessens
any servo overshoot or in-place dithering. I will also further discuss the R f resistor
when I cover the CR servo operation.

Figure 7.7 Demonstration M51660L schematic.

 166 B u i l d Y o u r O w n Q u a d c o p t e r

The above analysis, while a bit lengthy and detailed, was provided to give you an
understanding of the complexity of what is constantly happening within the servo case. This
knowledge should help you determine what might be happening if one of your servos starts
operating in an erratic manner.

The word deadband, as mentioned in step 4 of the analysis, is worth further explanation.
Deadband used in this context refers to a slight voltage change in the control input that
should not elicit an output. This is a deliberate design feature created for the instance when
you do not want the servo to react to any slight input changes. Using a deadband improves
servo life and makes it less jittery during normal operations. The deadband is fixed in the
demonstration circuit by a 1 kΩ-resistor connected between pins 9 and 11. This resistor forms
another feedback loop between the pulse-stretcher input and output.

The last servo parameter I will discuss is the pulse-stretcher gain, which largely controls
the error pulse length. This gain in the demonstration circuit is set by the values of the
capacitor from pin 11 to ground and the resistor connected between pins 11 and 13. This gain
would also be referred to as the proportional gain (Kp) in closed-loop control theory. It is
important to have the gain set to what is sometimes jokingly called the “Goldie Locks
region,” not too high and not too low, but just right. Too much gain makes the servo much
too sensitive and possibly could lead to unstable oscillations. Too little gain makes it too
insensitive and prone to very poor response. Sometimes, experimenters will tweak the
resistor and capacitor values in an effort to squeeze out a bit more performance from a servo;
however, I believe the manufacturers have already set the component values for a good
compromise between performance and stability.

The Digital Servo
It turns out that there are almost no differences between analog and digital mechanical servo
components. The mechanical differences, when present, are often related to using metal
gears and ball bearings in digital units, which are more expensive than the analog units.
However, the main difference is found in the electronic-control board. The analog control
was explained in the previous section: analog-control circuits are used in conjunction with
digital-logic and comparator circuits. No numeric calculations or analog-to-digital conversions
(ADC) are done in an analog servo; hence, there is no need for the microcontroller chip that
is present in the digital servo.

Figure 7.8 shows three views of a reasonably priced Dynamixel AS-12 digital servo. The
ATmega8L servo with its controller board exposed and mounted at the bottom of the servo

Figure 7.8 Dynamixel AS-12 digital servo interior views.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 167

can clearly be seen on the right side of the figure. I have already discussed the ATmega8L
chip in Chapter 5 because it is the common controller used in many ESCs. In this application,
the chip does ADC as well as real-time numeric calculations to generate the appropriate
power-control pulse in much the same fashion that the ESC did in response to its PWM
signals.

The digital servo has several significant advantages and one big disadvantage as
compared to the analog servo, all of which are listed in Table 7.1.

The digital servo outperforms the analog servo in all areas except power consumption,
which can be a factor if your aircraft uses many servos. This is actually not that great a
concern given the current availability of high-energy and high-capacity LiPo batteries.

I have also included Figure 7.9, which is an excerpt from the Fubata datasheet that shows
quite clearly the relationship of the R/C control pulses as they apply to both analog and
digital servos.

Figure 7.9 R/C command pulses applied to both analog and digital servos.

Feature Analog Digital

Adjust pulse parameters Unable to adjust; fixed by
circuit component values

Able to dynamically adjust for
optimal performance

Update frequency or rate Fixed at the incoming
frequency, normally 50 Hz

Receives at 50 Hz but
updates to motor at 300 Hz

Deadband Fixed by component value Adjustable to suit dynamic
operating conditions

Torque Low to moderate; slow to build
to peak value

Moderate to high; very rapid
build-up to peak

Power consumption Low to moderate Moderate to high

Cost Low to moderate Moderate to high

Table 7.1 Feature Comparisons between Analog and Digital Servos

 168 B u i l d Y o u r O w n Q u a d c o p t e r

The analog servo is referred to as the “Standard Servo” in the figure. Also, Diagrams 1,
2, and 3 refer to the no-power, low-power, and high-power operating conditions, respectively.
The analog servo is fixed at using the pulses that arrive at the nominal 50-Hz frequency,
while the digital servo creates as many as six times that number of analog pulses in the same
20-ms time frame. This means that more average power is being applied to the internal servo
motor, which results in more torque and a much faster response. Of course, more average
power means more power consumption, which is the digital servo disadvantage.

One more excerpt from the Futaba datasheet is Figure 7.10, which shows a comparison
of deadband characteristics, such as percentage of torque versus response time. What you
are looking for in these characteristic graphs is a nearly vertical line indicating that the servo
rapidly builds torque to the 100% level in a very short time interval. You can see from Figure
7.10 that the digital response is much better than the analog response. This is due to the
controller continuing to optimize its performance and the much faster update rate that is in
use in the digital unit.

Continuous Rotation Servos
Sometimes you will need a servo to act as a normal motor with the added advantage of
being able to closely control both the speed and rotation direction. I have used continuous
rotation (CR) servos for quite a long time in the robots I build for both classroom and personal
use. You may purchase CR servos, or you can convert a standard servo to a CR type fairly
easily. CR servos are almost identical in price to standard servos. I will explain the difference
between the two, and you can decide if you want to convert or purchase a CR servo.

The standard servo has a mechanical stop in place on a gear that is part of the main
output shaft. This tab restricts the output shaft to a fixed range of motion, usually 180°.
Figure 7.11 shows this mechanical stop on a standard servo gear train set.

I would recommend snapping the tab off with a sharp diagonal cutter rather than filing
it down. Ensure that you disassemble the gear set before working on it, since you don’t want

Figure 7.10 Deadband characteristic graphs for analog and digital servos.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 169

any plastic shards or filings gumming up the gear train. Figure 7.12 shows the tab neatly
removed and filed flat.

The next step in the conversion process is to remove the potentiometer by desoldering
it from the circuit board. The potentiometer also has built-in stops, which would restrict
the output shaft if it were not removed. The potentiometer must be replaced with a resistor-
divider circuit that supplies the midpoint voltage to the one-shot multivibrator. Figure
7.13 shows an altered demonstration schematic with two 2.2-kΩ resistors replacing the
potentiometer.

Now the control chip believes it is always at the center point, and when you supply an
input-pulse waveform with more than a 1.5 ms width, the controller will drive the motor in
a CW direction. Conversely, if the input pulse width is less than 1.5 ms, it will drive the
motor in a CCW direction. Additionally, as you either decrease or increase the pulse width,
the motor will rotate faster in the respective direction. This means that a 2.0-ms pulse width
produces the maximum speed in the CW direction, while a 1-ms pulse width produces the
maximum speed in the CCW direction.

The only disadvantage is that the motor will tend to creep if your resistor divider doesn’t
produce exactly the midpoint voltage. Exactly how much is hard to predict, since the torque

Figure 7.11 Mechanical stop.

Figure 7.12 Tab removed from gear.

 170 B u i l d Y o u r O w n Q u a d c o p t e r

needed to meet operational requirements plays a part in actually moving whatever object is
being powered by the CR servos. A large robot would likely not even move because of the
minute creep signal that is created. I would definitely use matched or precision resistors in
order to divide the voltage as precisely as possible.

Another way to address this issue is to alter the value of the deadband resistor (the 1 kΩ)
to help eliminate the undesired motion. It would take a trial-and-error process to determine
the correct value.

There is one final caveat that you should know. It is entirely possible that the plus or
minus .5-ms deviation from the center 1.5-ms pulse width will not produce the full rotation
speed change that is possible. This is entirely due to having too large a value for the feedback
resister R f . The value set for this resistor in the demonstration circuit is 560 kΩ. This may
have to be lowered to 120 kΩ to achieve the full speed capability for pulse widths that range
from 1 to 2 ms.

Note: This conversion process of changing standard servos to CR servos is applicable only to analog
servos. I am not aware of any process to convert a digital servo. It may be possible but certainly
would involve changing proprietary firmware, which is just not feasible.

R/C Signal Display System
It is critical to confirm the quality and values of pulse signals when designing a control
system based upon those signals. The following system uses a BOE and an LCD to display
three R/C channel pulse widths in real time. I used an ordinary 9-V battery to power the
system in order to show that it has minimal power requirements. Figure 7.14 shows a
pictorial diagram of the main components and how they are interconnected using standard
three-wire servo cables.

Figure 7.13 Demonstration M51660L schematic altered for CR operation.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 171

In Figure 7.15, the actual test setup is shown running with three R/C channels being
displayed on the LCD. I will discuss the displayed data shortly.

The LCD display is an interesting peripheral. It uses a standard 4 × 20 character display
with backlight control to help with the character visibility in various ambient lighting
conditions. Normally, LCD displays are parallel devices, which means that they require a
total of 8 to 16 control lines from a microprocessor to display data, depending on whether
they are in a nibble (4 lines) or byte (8 lines) mode. The LCD I used for this setup has a

Figure 7.14 Pictorial diagram of the real-time, servo-pulse-monitoring test system.

Figure 7.15 Test system running and displaying real-time data.

 172 B u i l d Y o u r O w n Q u a d c o p t e r

Parallax-developed serial-to-parallel “back-pack” auxiliary board, which is shown attached
to the back of the main LCD board in Figure 7.16.

This board uses only a single TTL serial line to accept data and display it on the LCD. I
used a standard servo-control cable to connect it to the BOE. The secret to this simplified
operation is the driver software that is discussed below.

The software running on the BOE is a modified version of a Spin program named
RX_Demo. It was created and posted on Parallax’s website in their Spin software exchange
they call OBEX. This site is a very valuable resource where you will likely find programs that
will either directly match your requirements or need only slight modifications to do so. I
slightly modified the original top object to take advantage of the built-in servo ports in the
BOE configuration. I also reduced the number of R/C channels monitored from six to three,
as that satisfied my requirements.

The project software ultimately involved eight Spin files with four of the eight filling
what I will term utility roles. These utility files handled the LCD display, serial interface, and
numeric conversions. Figure 7.17 is a PSerT screenshot of the beginning of the RX_demo
program.

Please notice the Spin program hierarchy shown in the upper left-hand corner of this
figure. You can easily see the relationships between the various objects. Essentially, the
program named Debug_Lcd takes care of all the display functions needed in the RX_demo
program. The RX program does the actual pulse-width detection and reports the results
back to RX_demo. Finally, the Servo32v6 program handles any servo pulse modifications
that are needed before being sent to the designated output pins.

Figure 7.16 LCD display serial-to-parallel converter board.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 173

Below is the RX_demo program listing for which I have included the original
documentation as well as my own comments to help clarify the program’s functioning.

{{

* RX Demo version 1.4 *
* Author: Rich Harman *
* Copyright (c) 2009 Rich Harman *
* See end of file for terms of use. *

 Read RC inputs on 3 pins, output same values on 3 more pins

 Coded by Rich Harman 15 Jul 2009

 Thanks go to Sam Mishal for his help getting the counters to work

 Modified by D. J. Norris 20 Sep 2013

Theory of Operation:

Launch three cogs using the object RX which in turn starts two
counters. This approach does NOT need the pulses to arrive on the
pins in any certain order, nor does it require the pins to be all
connected. Whatever pulse is received on pin 14 is then sent out to
pin 1 and so on.
}}

Figure 7.17 Start of the RX_demo program in the PSerT.

 174 B u i l d Y o u r O w n Q u a d c o p t e r

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 LCD_PIN = 19 ‘I selected this servo port for
 convenience
 LCD_BAUD = 19_200 ‘Ensure the LCD back-pack matches this
 baud rate
 LCD_LINES = 4

VAR
 long pulsewidth[4]

DAT
 pins LONG 14, 15, 16

OBJ
 lcd : “debug_lcd”
 RX : “RX”
 servo : “Servo32v6”
 num : “Simple_Numbers”

PUB Init
 if lcd.init(LCD_PIN, LCD_BAUD, LCD_LINES) ‘init returns True if
 it ran
 lcd.cursor(0) ‘cursor set to off
 lcd.backLight(True) ‘turn on LCD backlight
 for easier character
 display
 lcd.cls ‘clear the LCD screen
 lcd.str(string(“RX Demo v0.1”)) ‘welcome banner
 waitcnt(clkfreq + cnt) ‘wait for 1 second

 servo.start ‘start the servo
 object

 Rxinput

PUB RXinput | i, pulse[4]

 lcd.cls
 RX.start(@pins,@pulseWidth) ‘start three RX objects using
 the pins array values. RX populates
 the pulseWidth array with the data

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 175

 waitcnt(clkfreq/2 + cnt) ‘wait .5 seconds

 repeat
 repeat i from 0 to 2
 pulse[i] := pulsewidth[i] ‘capture pulse values from
 pins 14 to 16
 waitcnt(clkfreq / 2 + cnt)

 updateLCD(pulse[0],pulse[1],pulse[2]) ‘display pulse values on
 LCD

 out(i, pulse[i]) ‘send servo pulses out
 pins 0 to 2

PRI updateLCD(value1, value2, value3) | numstr

 numstr := num.dec(value1)
 lcd.str(numstr)
 lcd.str(string(“ “))
 numstr := num.dec(value2)
 lcd.str(numstr)
 lcd.str(string(“ “))
 numstr := num.dec(value3)
 lcd.str(numstr)
 lcd.str(string(13))

PUB out(_pin, _pulse)

 servo.set(_pin, _pulse)

DAT

When the program runs, the welcome briefly flashes, and then the pulse-width data for
three channels is continuously scrolled on the LCD screen. The values are in microseconds,
meaning that a value of 1504, as shown on the screen, translates to 1.504 ms.

In the test setup, three of the R/C receiver’s channels were connected as follows:

1. Throttle to Servo 14
2. Aux 3 to Servo 15
3. Aux 1 (Flaps) to Servo 16

I then deliberately set each of the corresponding controls on the DX-8 transmitter to its
midrange position, which is why you see values near 1500 displayed on the LCD screen in
Figure 7.15.

The RX program that measures the incoming pulse width is worth discussing because it
uses a different way of determining pulse width than has been previously covered in this
book. The code for this is shown below with some clarifying comments after the listing.

 176 B u i l d Y o u r O w n Q u a d c o p t e r

{{
Theory of Operation:

Launch three cogs using the object RX which in turn each start two
counters. This approach does not need the pulses to arrive on the
pins in any certain order nor does it require all the pins to be
connected. Whatever pulse is received on pin 14 is then sent out to
pin 0 and so on.
}}

VAR
 byte cog[3]
 long stack[60]
 long uS

PUB start(pins_array_address, pulsewidth_array_address) | i

 uS := clkfreq/1_000_000

 stop ‘call the stop method to stop
 cogs that may be already started
 repeat i from 0 to 2
 cog[i] := cognew(readPins(@long[pins_array_address][i*2],
 @long[pulsewidth_array_address][i*2]), @stack[i*20]) + 1

PUB stop | i
 repeat i from 0 to 2
 if cog[i]
 cogstop(cog[i]~ -1)

PUB readPins (pins_address, pulsewidth_address) | i, p1, p2,
synCnt, active1, active2

 repeat i from 0 to 1
 spr[8+i] := %01000 << 26 + long[pins_address][i] ‘set the
 mode and pin for ctra/b
 spr[10+i] := 1 ‘set frqa/b

 p1 := long[pins_address][0]
 p2 := long[pins_address][1]
 dira[p1]~
 dira[p2]~
 long[pulsewidth_address][0]~ ‘these lines ensure that the
 count = 0

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 177

 long[pulsewidth_address][1]~

 active1 := false
 active2 := false

 synCnt := clkfreq/4 + cnt
 repeat until synCnt =< cnt ‘ wait 1/4 second to check if
 pins are active
 if ina[p1] == 1
 active1 := true
 if ina[p2] == 1
 active2 := true

 repeat
 if active1 == true
 waitPEQ(0, |< p1, 0) ‘wait for low state, do not
 start counting when high
 phsa~ ‘counter set to zero
 waitPEQ(|< p1 , |< p1, 0) ‘wait for high
 waitPEQ(0, |< p1, 0) ‘wait for low state i.e.
 pulse ended
 long[pulsewidth_address][0] := phsa/uS

 if active2 == true
 waitPEQ(0, |< p2, 0)
 phsb~
 waitPEQ(|< p2, |< p2, 0)
 waitPEQ(0, |< p2, 0)
 long[pulsewidth_address][1] := phsb/uS

DAT

The RX_demo and RX programs exchange data using a common technique called
indirection, where variables represent the physical memory addresses of the data. In C and
C++, these indirect variables are called pointers. It is a powerful and very efficient means to
exchange data, but be aware that it has inherent dangers, since you can easily misuse a
pointer and crash your program and maybe the whole computer. Two references are created
in the RX_demo program, as shown below:

VAR
 long pulsewidth[4]

DAT
 pins LONG 14, 15, 16

The array named pulsewidth has four “long” word elements that may be indexed
as pulsewidth[0] to pulsewidth[3]. Data may be written to and/or read from

 178 B u i l d Y o u r O w n Q u a d c o p t e r

these variable locations. Also, note that it was declared in a VAR block. The memory location
variable reference is simply the name pulsewidth prepended with the “@” symbol. So
using @pulsewidth tells the program to either store or read data beginning at that location.
It is important to state that you should never use an actual physical memory address but
simply use the logical reference name or pointer.

The next reference, named pins, also has four “LONG” word elements. Notice that the
word "LONG" was capitalized in this declaration. This was a purely optional choice and was
done to indicate that the pins array is constant and cannot be overwritten. The pins array
was declared in a DAT block, meaning that it is data. It is a read-only data array. You certainly
would not want to dynamically change the pin designations for your input channels.
However, it can be referred to as pins, just as the pulsewidth array may be referred to as
pulsewidth.

The following method call in the RX_demo tells the start method in the RX object where
to find the data regarding the input pins and also where to store the pulse-width data
corresponding to those pins. Note the indirection used in the arguments.

RX.start(@pins,@pulsewidth)

The Spin compiler is quite elegant and advanced, since it will automatically create the
appropriate reference type based upon the contextual use. The start method signature is
shown below:

PUB start(pins_array_address, pulsewidth_array_address)

The RX.start method call in RX_demo uses @pins and @pulsewidth to pass the
starting array addresses. These are copied into the pins_address and the pulsewidth_
address arguments respectively, making them pointers, since they contain addresses not
real data. In C and C++, these arguments would have to be separately declared as pointers;
however, Spin does it for you as needed. This is a very nice feature.

One more point before I get off my tangent regarding data indirection and pointers.
Pointers can be treated as normal data; for example, assigned to other pointer variables or
having simple arithmetic operations applied to them. The key point to remember is if you
add 1 to a pointer, you are not incrementing the physical address but instead are instructing
the compiler to use the next logical element in the memory storage area. Using the start
method as an example:

pins_array_address = start of the pins array
 = address of pins[0]
 = actual value of 14

Now add 1 to pins_array_address and we get:

pins_array_address + 1 = address of pins[1]
 = actual value of 15

From my teaching experience, I have learned that pointers and indirection have often
been difficult concepts for beginners to understand. This is the reason why I presented such
a detailed discussion regarding this somewhat complex topic. You really should understand
this material in order to get the most from the software development whether you are using
Spin, C/C++, or any other language that uses these concepts.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 179

The start method also contains this very complex statement:

cog[i] := cognew(readPins(@long[pins_array_address][i*2],
@long[pulsewidth_array_address][i*2]), @stack[i*20]) + 1

It is the instruction that creates several cogs to do the pulse-width measurements. This
instruction is in a loop that iterates i from 0 to 2. Substituting 0 for i in the first iteration
results in this:

cog[0] := cognew(readPins(@long[pins_array_address][0],
@long[pulsewidth_array_address][0]), @stack[0]) + 1

This really odd expression simply translates as:

Start executing the method named readPins using the beginning data pointed to
by the “pins_array_address” pointer and store the result in the first memory
location pointed to by “pulsewidth_array_address.” Also, use all the
memory needed for the cog located at the beginning of the “stack” memory area.

The index ‘i’ will increment to 1. Then the whole process will repeat with cog number 1,
and it will use the next sequential pin number and store the result in the next sequential
location in the pulsewidth array. The stack location is incremented by 20 due to the expression
@stack[i*20], which ensures that the new cog has plenty of memory space within which
to operate.

The readPins method is the heart of the RX object. I will not step through this method
line-by-line other than to point out the liberal use of the waitPEQ instruction in this method.
waitPEQ pauses the cog’s execution until a pin, which is being monitored, reaches a certain
state, normally high or low. Of course, the system counter continues to run, thus accumulating
a count directly proportional to the elapsed time. Therefore, the high and low times of a
pulse are easily determined using this instruction.

The last portion of the program is concerned with the extended servo outputs that are
handled by the Servo32v6 program along with the associated sub-object Servo32_Ramp_v1.
This program is a clever extension that will allow you to control up to 32 servos, if you
needed such a hefty requirement. I will not be discussing these programs though, since they
are not used in either of the two servo applications I discuss below. Just be aware that
operating a large number of servos simultaneously can represent a hefty current flow. Even
the standard Hitec HS-311 analog servo can take up to 180 mA when operating at no load.
The peak-current draw will, of course, go much higher if there is a torque load on the servo.
That would mean about an average 3-A current flow, if you were by any chance, trying to
run 16 servos at the same time. This is a heavy draw that could rapidly deplete a normal
battery.

Elev-8 LED-Lighting Controller
This project is actually a second revision of an LED-lighting controller that I built and
installed on my original Elev-8. That controller is shown in Figure 7.18. It worked quite well
and was based on the Parallax Basic Stamp II BOE. The LED transistor-driver circuits are
located under the hardboard labeled Elev-8 seen on the left side of the figure.

This controller worked correctly as I mentioned above, but I was a bit disappointed that
I could not dynamically control the light pattern once it was programmed. I made all the

 180 B u i l d Y o u r O w n Q u a d c o p t e r

LED strips flash in a variety of patterns that just kept repeating, in a way that reminded folks
who saw it of the Close Encounters of the Third Kind movie without the music.

The more I thought about it, the more I wanted to be able to send a signal to the
quadcopter to dynamically change the lighting. One thought was to flash just the LEDs
attached to the forward booms so that I could easily see in which direction the quadcopter
was moving, especially as daylight faded. I also wanted to stop the flashing entirely in order
to conserve battery energy. These ideas would lead to the following requirements:

•	 Forward boom LEDs flashing
•	 All LEDs flashing
•	 No LEDs flashing

These requirements meant that I needed an unused three-state control switch. By
serendipity, the switch happened to be available on the DX-8 in the form of the Aux-1, or
Flaps, control switch. This light control is an ideal use of the three-position switch because
the Elev-8 does not and will never require flaps.

I tested the switch shown in Figure 7.19 and determined that it generated the following
pulse widths for the three switch positions, as shown in Table 7.2.

The LED light strips cannot be run directly from the BOE because the current draw is too
high. Therefore, I created four transistor driver circuits that control the four strips based on

Figure 7.18 Early version of an Elev-8 LED-lighting controller.

Switch Position Pulse Width (ms)

0 1.898

1 1.505

2 1.111

Table 7.2 Aux-1 (Flaps) Pulse Width versus Switch Position

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 181

gate signals from the BOE, and eventually, from the QuickStart board. As I mentioned earlier
in the book, the BOE would be my development platform. I would use it to eventually port
all the control programs over to the QuickStart once I have confirmed that everything
functions as it should. Figure 7.20 is a picture of the QuickStart board that will be used as the
onboard lighting controller.

The following is a Spin program that I wrote to monitor the pulse width being received
on the Aux-1 channel, and then, to modify the LED lighting scheme in accordance with the
requirements. The transistor-driver circuit is contained in the header documentation; however,

Figure 7.19 DX-8 Aux-1 (Flap) switch.

Figure 7.20 Parallax QuickStart board.

 182 B u i l d Y o u r O w n Q u a d c o p t e r

the special characters used to create the schematic do not copy over using the Word program’s
copy and paste functions. Figure 7.21 shows a screenshot of the schematic portion.

{{
LED_Control
D.J. Norris (C) 2013
This program sets the LED lighting mode for the four LED strips
attached to the underside of the Elev-8 booms. The mode is selected
based upon the Flap switch position on the Spektrum DX-8 R/C
transmitter.
The three possible positions with associated modes and pulse widths
are:

Position Mode Pulse Width
 0 Flash front boom LEDs only 1.899 ms
 1 Flash all LEDs 1.505 ms
 2 No LEDs are lit or flashed 1.111 ms

Driver schematic

See Figure 7.21, since as already mentioned, Word copy/paste does
not work with the special characters used to create the Spin
documentation schematic.

}}

CON
RIGHT_FRONT = 1
LEFT_FRONT = 2
RIGHT_REAR = 3
LEFT_REAR = 4
WAIT_CNT = 40_000_000
RIGHT_FRONT_PIN = 5
LEFT_FRONT_PIN = 6
RIGHT_REAR_PIN = 7
LEFT_REAR_PIN = 8

VAR
 long stack[20]

Figure 7.21 Transistor driver circuit.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 183

PUB init
 dira[RIGHT_FRONT_PIN] := 1
 dira[LEFT_FRONT_PIN] := 1
 dira[RIGHT_REAR_PIN] := 1
 dira[LEFT_REAR_PIN] := 1

PUB start(num) ‘num is the parameter passed from
 RX_demo to select the mode
 case num
 0 :
 cognew(mode0,@stack) ‘start a fresh cog for
 flashing the LED strips
 mode0
 1 :
 cognew(mode1,@stack)
 mode1
 2 :
 cognew(mode2,@stack)
 mode2

 PUB mode0 ‘Flashes just the LED strips
 on the forward booms
 outa[RIGHT_FRONT_PIN] := 1
 outa[LEFT_FRONT_PIN] := 1
 outa[RIGHT_REAR_PIN] := 0
 outa[LEFT_REAR_PIN] := 0
 waitcnt(WAIT_CNT + cnt)
 outa[RIGHT_FRONT_PIN]~ ‘Toggle the pin
 outa[LEFT_FRONT_PIN]~

PUB mode1 ‘Flashes all the LED strips
 outa[RIGHT_FRONT_PIN] := 1
 outa[LEFT_FRONT_PIN] := 1
 outa[RIGHT_REAR_PIN] := 1
 outa[LEFT_REAR_PIN] := 1
 waitcnt(WAIT_CNT + cnt)
 outa[RIGHT_FRONT_PIN]~
 outa[LEFT_FRONT_PIN]~
 outa[RIGHT_REAR_PIN]~
 outa[LEFT_REAR_PIN]~

PUB mode2 ‘No LED strips are flashed
 outa[RIGHT_FRONT_PIN] := 0
 outa[LEFT_FRONT_PIN] := 0
 outa[RIGHT_REAR_PIN] := 0
 outa[LEFT_REAR_PIN] := 0

 184 B u i l d Y o u r O w n Q u a d c o p t e r

You should realize that the above code is totally useless unless referenced and used by
the top object, which is RX_demo. I once again modified RX_demo to use the LED program,
and I also added some logic to determine the appropriate LED lighting mode to call. This
code listing is abbreviated without the header or license information. I also added comments
in an italic font to highlight the LED_Control program changes.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 LCD_PIN = 19
 LCD_BAUD = 19_200
 LCD_LINES = 4

VAR
 long pulsewidth[4]

DAT
 pins LONG 14, 15, 16, 17

OBJ
 lcd : “debug_lcd”
 RX : “RX”
 servo : “Servo32v6”
 num : “Simple_Numbers”
 led : “LED_Control” ‘new reference “led” for
 the LED_Control program

PUB Init

if lcd.init(LCD_PIN, LCD_BAUD, LCD_LINES)
 lcd.cursor(0)
 lcd.backLight(True)
 lcd.cls
 lcd.str(string(“RX Demo v0.1”))
 led.init
 waitcnt(clkfreq + cnt)

servo.start

Rxinput

PUB RXinput | i, pulse[4]

 lcd.cls

 RX.start(@pins,@pulseWidth)

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 185

 waitcnt(clkfreq/2 + cnt)

 repeat
 repeat i from 0 to 2
 pulse[i] := pulsewidth[i] ‘capture pulse values
 from pins 14 to 16
 waitcnt(clkfreq / 2 + cnt)

 updateLCD(pulse[0],pulse[1],pulse[2]) ‘display pulse values
 on LCD

 out(i, pulse[i]) ‘send servo pulses out
 pins 0 to 2

 if pulse[2] > 1600 ‘this is the start of the logic to
 determine the LED lighting mode
 led.start(0) ‘send a 0 to tell LED_Control to
 enter mode0
 if pulse[2] > 1200 AND pulse[2] < 1600
 led.start(1) ‘send a 1 to tell LED_Control to
 enter mode1
 if pulse[2] < 1200
 led.start(2) ‘send a 2 to tell LED_Control to
 enter mode2

PRI updateLCD(value1, value2, value3) | numstr

 numstr := num.dec(value1)
 lcd.str(numstr)

 lcd.str(string(“ “))

 numstr := num.dec(value2)
 lcd.str(numstr)

 lcd.str(string(“ “))

 numstr := num.dec(value3)
 lcd.str(numstr)

 lcd.str(string(13))

PUB out(_pin, _pulse)

 servo.set(_pin, _pulse)

DAT

 186 B u i l d Y o u r O w n Q u a d c o p t e r

All that you need to do to run this software is to load the new LED_Control and the
modified RX_demo into the project, recompile it, and execute it (F11 key). Figure 7.22 shows
the LED-development-test setup for the LED-strip control project. I captured all the LEDs
being lit as the BOE was operating in mode 1. You may also be able to see that the DX-8 Aux-
1 (FLAP) switch is in the middle, or 1, position, which commands that all LEDs flash. Also,
note that the LCD display is showing the number 1505 in the rightmost column, which is the
Aux-1 pulse width in microseconds.

The actual transistor-switching circuit board that controls the four LED strips and is
mounted in the Elev-8 is shown in Figure 7.23.

Figure 7.22 The LED-development setup while running in mode 1.

Figure 7.23 The LED-strip transistor-switching circuit board.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 187

The complete transistor-switching board may be installed between the Elev-8 boom
ends, as shown in Figure 7.24. I have also wired all the LED-strip power leads to the
transistor-switching circuit board in this figure.

Figure 7.25 shows the complete installation of the transistor-switching circuit board
along with the QuickStart board. You can see that I used a solderless breadboard to connect
all the leads from the transistor-switching circuit board to the QuickStart board as well as to
the Aux-1 R/C channel.

I also temporarily connected the LCD screen to verify that the proper pulse signal was
being received on the Aux-1 channel. You can see that the pulse width changed very slightly
from 1504 to 1505 during the test I ran when the photo was taken. This slight change of one
microsecond will not affect the mode selection because the program code uses a much
larger test value before a mode change is made. I also deliberately made the decision to use
a solderless breadboard to enable quick configuration changes, while recognizing that it is
not as reliable as using solid mechanical connections. A critical flight-control problem
would not arise if one of these connections were to fail during a flight, since it controls only
the LED lighting.

Figure 7.24 Installation of the LED-strip transistor-switching circuit board.

Figure 7.25 LED-strip transistor-switching circuit board and QuickStart board installation.

 188 B u i l d Y o u r O w n Q u a d c o p t e r

One last thing I want to point out is some of the telemetry data being displayed by
the DX-8 LCD screen, as shown in Figure 7.25. The screen shows the LiPo-battery voltage at
12.0 V, the left rear motor rotating at 1293 r/min, and the ambient temperature at 71°. Note
that the r/min reading is incorrect for the reasons I previously stated in Chapter 6’s telemetry
section. It really should be closer to 4300 r/min.

Tilting Mechanism for a First-Person Viewer
The first thing you need to know about this project is that no software is required because it
uses only the standard R/C servo-control functionality. I have included this project to show
how very simple it is to implement a standard servo actuator to support an enhancement to
the Elev-8. The servo will tilt a video camera that is part of a first-person video (FPV) system,
which is really just a fancy way of saying that there is a video camera mounted on the
quadcopter to show you where you are going. I am using the GoPro Hero 3 camera that
incorporates both video recording capability and real-time video by using a WiFi connection.
Figure 7.26 shows a picture of the Hero 3 camera. I will not say much about it here, since
I devote all of Chapter 8 to using video with a quadcopter.

This camera will be attached to the bottom of the Elev-8 with the lens positioned to look
forward. This is fine for conducting ordinary flight and avoiding obstacles, such as trees or
tall buildings. However, I wanted to increase the camera’s flexibility so it would be able to
tilt downward and see the terrain and objects beneath the quadcopter while it was either
hovering or traveling in a level plane. In addition, I was not concerned about panning the
camera, since it is very easy to simply yaw the quadcopter if you want to shift the viewing
direction.

After some thought and a bit of research, I came up with a simple tilting-platform design
that I am sure has been done before by many others in a similar fashion. Figure 7.27 is a
concept sketch that I used before proceeding with the design.

The fixed outer frame is designed for attachment to the Elev-8’s bottom chassis plate
with some nylon spacers as well as appropriately sized machine screws and nuts. I used
Lexan to build the frame and rotatable platform, since it is both strong and easy to work
with. I used wood blocks, a bench vise, and a heat gun to bend the Lexan strip to the form
shown in the Tilting Platform Assembly drawing, which can be found on this book's website,
www.mhprofessional.com/quadcopter.

Figure 7.26 GoPro Hero 3 video camera.

http://www.mhprofessional.com/quadcopter

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 189

A Hitec standard HS-311 was used as the table actuator because it seemed to have
sufficient torque to turn and hold the camera to the desired position. Figure 7.28 shows the
tilt platform without the camera attached to illustrate that it is a simple design.

My only concern with this project was that mounting the camera too far off-center would
upset the center-of-gravity, since the assembly with the camera weighs 281 grams. This
amount of mass mounted off center could make the quadcopter too unstable to fly. The fully
assembled platform assembly with the camera in its water resistant case is shown in Figure
7.29. I mounted the assembly on wooden blocks to provide clearance and allow free camera
movement.

The servo cable was attached to the DX-8 Aux-3 R/C channel to test the assembly. I used
this control because it creates a continuously variable pulse width from 1.0 to 2.0 ms, which

Figure 7.27 Concept sketch for the tilting platform.

Figure 7.28 Camera tilting platform assembly.

 190 B u i l d Y o u r O w n Q u a d c o p t e r

means a 0° to 90° range of motion for the rotatable platform. Figures 7.28 and 7.29 show the
camera set at 0°, while Figure 7.30 shows the camera set at 90°. This range of motion
corresponds to the Aux-3 knob set from fully CCW to fully CW.

If you look carefully at the Figure 7.30, you can see the portion of the BOE in the upper
right hand corner that I used to supply power to the servo. The BOE was powered by a 9-V
battery, which made for a very portable setup.

The frame for the tiltable platform was attached to the Elev-8 bottom chassis plate, using
four 1-in 4-40 screws along with four 5∕16-in OD nylon spacers, washers, and nuts. I aligned
the frame to the plate and then used a Sharpie™ marker to locate four holes to be drilled

Figure 7.29 Fully assembled camera platform on a test platform.

Figure 7.30 Camera at the 90° position.

 C h a p t e r 7 : S e r v o M o t o r s a n d E x t e n d i n g t h e S e r v o C o n t r o l S y s t e m 191

through the frame top. Figure 7.31 is a top view of the bottom chassis plate showing the four
attachment screw tops. You can readily see the four nylon spacers that support the tiltable
frame in Figure 7.32.

My only caution is to ensure that the movable platform that holds the camera is not
blocked in its range of motion by any of the mounting screws. I had to slightly notch the
platform to allow some clearance for the screws so that the platform could rotate throughout
a full 90° range of motion.

This tiltable camera platform project came out very well, and it is much less expensive
than any commercial product that will provide a similar function. The total cost of the parts,
without the camera, is less than $15.

Figure 7.31 Tiltable-frame screw attachments.

Figure 7.32 View of the tiltable frame attached to the bottom chassis plate.

 192 B u i l d Y o u r O w n Q u a d c o p t e r

Summary
I began this chapter by discussing what is inside a standard analog servo motor and how
those innards function. This was followed by a comprehensive circuit analysis of the servo
electronic-control board that receives an incoming pulse train and converts it to the
equivalent actuator motion.

In a discussion of the digital servo, I pointed out that there was little to no difference
between the analog and digital mechanical components. The main difference lies within the
electronic-control boards. The digital version provides significantly more torque, and it is
much faster at matching the changes in the incoming pulse train than its analog counterpart
is.

I next showed you how a continuous rotation (CR) servo functions and also how to
convert a standard analog unit into a CR unit. CR servos change motor speed and direction
in response to the standard servo pulse train, which is very handy if you need a low torque
and a low- to medium-speed motor. Otherwise, it is best to stick with a conventional motor
that has a complimentary speed control unit attached to it.

Next I discussed a portable servo-signal analysis system that could display on a 4 × 20
LCD screen the pulse widths for up to three R/C channels. The software, which was run
on a BOE, was thoroughly analyzed. I also included an in-depth discussion on the subject
of indirection and pointers, a sometimes bewildering topic, especially for beginner
programmers.

Then I covered two projects, the first of which was an LED-strip lighting controller. This
controller is designed to be placed onboard the Elev-8 and controls each LED strip based
upon the pulse width sent by the DX-8 Aux-1 (FLAP) channel. There are three separate
lighting modes, since the Aux-1 has three positions. This lighting controller enhances the
Elev-8 but does not affect its flight performance.

The second project was a tiltable platform that has a GoPro video camera attached to it.
The platform is mounted on the Elev-8’s bottom chassis plate and tilts to enable the camera
to view the ground while it is either hovering or in level flight. The platform is tilted by a
standard analog servo that is directly controlled by the DX-8 Aux-3 channel. The camera
platform may be continuously tilted from 0 to 90 degrees, since the Aux-3 control is a
potentiometer.

The next chapter will show you how to set up and operate an HD real-time video system
that uses the tiltable platform to increase the video coverage.

chapter 8
GPS and a Real-Time

Situational Display

Introduction
In this chapter, I will discuss a GPS-based location system that is easily carried aloft by an
Elev-8 or other quadcopters with similar lifting capacity. The system will transmit its data to
a ground station where the quadcopter’s position, speed, course, and altitude will be visible
on a small display. The coordinates could also be entered into a laptop in order to display the
quadcopter’s position in the Google Earth application. This system, together with the First-
Person Video system described in the next chapter will be used to accurately determine the
quadcopter’s location and to view the environment in real time.

GPS Basics
We will begin with a short history of the Global Positioning System (GPS), and follow that with
a detailed explanation of how GPS systems generally function. Then I will focus on the
quadcopter’s GPS receiver and the development of a real-time display.

Brief GPS history
The GPS is a satellite system that was initially deployed in the early 1970s by the U.S.
Department of Defense (DoD) to provide military users with precise location and time
synchronization services. Civilian users could also access the system, but its services to
civilian users were purposefully degraded by the DoD to avoid any risk that it could be of
help to the country’s enemies. This purposeful degradation was lifted by order of President
Regan in the 1980s to allow civilians full and accurate GPS services.

The current GPS system has 32 satellites in high orbits over the earth. Figure 8.1 shows
a representative diagram of the satellite constellation. The satellite orbits have been carefully
designed to allow for a minimum of six satellites to be in the instantaneous field of view of
a GPS user who is located anywhere on the surface of the earth. A minimum of four satellites
must be viewed in order to obtain a location fix, as you will learn in the GPS basics section.

Several other GPS systems are also deployed:

GLONASS—The Russian GPS

Galileo—The European GPS

193

 194 B u i l d Y o u r O w n Q u a d c o p t e r

Compass—The Chinese GPS

IRNSS—The Indian Regional Navigation Satellite System

I will be using the U.S. GPS system because vendors have made many inexpensive
receivers for that system available for purchase. All receivers function essentially in the same
way and conform to the National Marine Electronics Association (NMEA) standard discussed
in a later section.

how GPS Functions
I made up an analogous, fictional, position-location system to help explain how the GPS
system functions. First, imagine a two-mile by two-mile land area where this system is set
up. The land terrain contains gently rolling hills, each no more than 30 feet in height. The
subject, using a special GPS receiver, may be located anywhere within this area. Also located
in this area are six 100-ft towers, each containing a beacon. The beacon atop each tower
briefly flashes a light and simultaneously emits a loud burst of sound. Each beacon also
emits the light and sound pulses once a minute but at a specific time within the minute.
Beacon one (B1) emits at the start of the minute, beacon two (B2) at 10 seconds past the start
of the minute, beacon three (B3) at 10 seconds later, and so on for the remaining beacons.

It is also critical that the GPS receiver have a line of sight to each beacon and also that the
position of each beacon is recorded in an embedded database that is also constantly available
to the receiver. The beacon positions B1 through B3 are recorded in x and y coordinates in
terms of miles from the origin, which is located in the upper left hand corner of the test area,
as shown in Figure 8.2.

The actual position determination happens in the following fashion:

•	 At the start of the minute, B1 flashes, and the receiver starts a timer that stops
when the sound pulse is received. Since the light flash is essentially instantaneous,
the time interval is proportional to the distance from the beacon. Since sound

Figure 8.1 GPS system satellite constellation.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 195

travels nominally at 1100 feet/s (second) in air, a 5-second delay would represent a
5500-ft distance. The receiver must then be located somewhere on a 5500-ft radius
sphere that is centered on B1. Figure 8.3 illustrates this abstraction in a graphical
representation taken from a Mathworks Matlab application.

•	 B2 flashes next. Suppose it takes 4 seconds for the B2 sound pulse to reach the GPS
receiver. This delay represents a 4400-ft sphere centered on B2. The B1 sphere and B2
sphere are shown intersecting in Figure 8.4. The heavily dashed line represents the

Figure 8.2 Beacon test area.

Figure 8.3 One sphere.

 196 B u i l d Y o u r O w n Q u a d c o p t e r

portion of the circle that is the intersection of these two spheres. The receiver must
lie somewhere on this circle. The circle is a straight line when observed in a planar
or perpendicular view. There is still, however, some doubt or uncertainty as to
where the receiver is located on the circle. Thus, another beacon is still needed
to resolve the uncertainty.

•	 B3 flashes next, and suppose it takes 3 seconds for the B3 sound pulse to reach the
GPS receiver. This delay represents a 3300-ft sphere centered on B3. The B1, B2, and
B3 spheres are shown intersecting in Figure 8.5. The receiver must be located at the
star shown in the figure. In reality, it could be at either a high or low point since
the third sphere intersects the two other spheres at two points. The receiver position
has now been fixed with regard to x and y coordinates but not the third, or z
coordinate. Guess what? Now you need a fourth beacon to resolve whether the
receiver is at the high or low point. I am not going to go through the whole process
again; I think you have figured it out by now.

•	 Figure 8.5 shows a plane view of all three spheres with the GPS receiver position
shown. You can think of it as a horizontal slice taken at z = 0, as shown in Figure 8.6.

In summary, it takes a minimum of three beacons to determine the x and y coordinates and
a fourth beacon to fix the z coordinate. Now translate beacons to satellites and x, y, and z
coordinates to latitude, longitude, and altitude, and you have the basics of the real GPS system.

The satellites transmit digital microwave radio frequency (RF) signals that contain both
identity and timing components that a real GPS receiver will use to calculate its position and
altitude. The counterpart to the embedded database mentioned in my example is called an
ephemeris, or celestial almanac, that contains all the data necessary for the receiver to calculate
a particular satellite’s orbital position. All GPS satellites are in high earth orbits (as mentioned
in the history section) and are constantly changing position. This movement requires the
receiver to use a dynamic means for acquiring their position fix, which, in turn, is provided

Figure 8.4 Two spheres intersecting.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 197

by the ephemeris. This is one reason why it may take a while for a real GPS receiver
to establish a lock, as it must go through a considerable amount of data calculations to
determine actual satellite positions within its field of view.

In my example, the radii of the “location spheres” are determined by the receiver using
extremely precise timing signals contained in the satellite transmissions. Each satellite
contains an atomic clock to generate these clock signals. All satellite clocks are constantly
synchronized and updated from earth-based ground stations. These constant updates
are needed to maintain GPS accuracy, which would naturally degrade because of two
relativistic effects. The best way to describe the first effect is to retell the paradox of the
space-travelling twin.

Imagine a set of two twins, (male, female—doesn’t matter) one of whom is slated to take
a trip on a fast starship to our closest neighboring star, Alpha Centauri. This round trip will

Figure 8.5 Three spheres intersecting.

Figure 8.6 Plane view of the three spheres intersecting.

 198 B u i l d Y o u r O w n Q u a d c o p t e r

take about ten years travelling at nearly the speed of light. The other twin will stay on Earth
awaiting the return of his/her sibling. The twin in the space ship will accelerate very close
to light speed and will patiently wait the ten years it will take, according to the clock in the
ship, to make the round trip. According to Professor Einstein, if the travelling twin could
view a clock on Earth he/she would observe time going by more quickly than it did in the
spaceship. This effect is part of the theory of special relativity and, more specifically, is called
time dilation. If the twin on Earth could view the clock in the spaceship, he/she would see it
turning at a much slower rate than the earthbound clock. Imagine what happens when the
travelling twin returns and finds that he/she is only ten years older but that the earthbound
twin is 50 years older due to time dilation. The space twin will have time travelled a net
40 years into Earth’s future by taking the ten-year space trip!

The second effect is more complex than time dilation. I will simply state what it is.
According to Einstein’s theory of general relativity, objects located close to massive objects,
such as the earth, will have their clocks moving slower as compared to objects that are
further away from the massive objects. This effect is due to the curvature of the space-time
continuum predicted and experimentally verified by the general relativity theory.

Now back to the GPS satellites that are orbiting at 14,000 kilometers per hour (km/h),
while the earth is rotating at a placid 1,666 km/h. The relativistic time dilation due to the
speed differences is approximately -7 µsec/day, while the difference due to space-time is
+ 45 µsec/day for a net satellite clock gain of 38 µsec/day. While this error is nearly
infinitesimal on a short-term basis, it would be very noticeable over a day. The total daily,
accumulated error would amount to a position error of 10 km or 6.2 miles (mi), essentially
making GPS useless. That is why the earth ground stations constantly update and synchronize
the GPS satellite atomic clocks.

Note: As a point of interest, the atomic clocks within the GPS satellites are deliberately slowed prior
to being launched to counteract the relativistic effects described earlier. Ground updates are still
needed to ensure that the clocks are synchronized to the desired one nanosecond of accuracy.

Quadcopter GPS Receiver
I selected the Parallax PMB-688 GPS receiver, which is small, lightweight, and very suitable
for use in this project. Figure 8.7 is a picture of this receiver. The PMB-688 GPS receiver will
track up to 20 satellite channels, which provides for both fast acquisition and the continuous
lock of NMEA data from the satellites. Table 8.1 lists key specifications and features for this
receiver.

Several key specifications are worth discussing a bit more. An acquisition sensitivity of
−148 dBm means that the receiver is extremely sensitive to picking up weak GPS signals.

Figure 8.7 Parallax PMB-688 GPS receiver.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 199

The −159 dBm tracking sensitivity means that the signal, once acquired, can lose up to 90%
of its original strength, yet remain locked in by the receiver.

Having an NMEA 0183 output operating at 9600 baud means that the receiver generates
standard GPS messages at a rate twice as fast as comparable receivers. The 30-second start-
up time is excellent and due in part to the receiver’s extreme sensitivity.

GPS Receiver UART Communications
Universal Asynchronous Receiver Transmitter (UART) is the serial data protocol used between
the GPS receiver and the Propeller Mini processor module (which is discussed in a later
section). Three data pins are the minimal amount necessary to establish a communications
link between the receiver and the processor. They are identified on the GPS as TTLTX
(transmit), TTLRX (receive), and GND (ground or common), as shown in Figure 8.8.

Features/Specifications Description

Sensitivity Acquisition: −148 dBm
Tracking: −159 dBm
(These are very sensitive levels.)

Chipset SiRFstar III

Channels 20, simultaneous tracking

Data protocol NMEA 0183 v2.2 GGA, GSV, GSA, RMC (optional VTG, GLL)

Power Typical 65 mA @12 V (Chip uses 3.3 V to 5 V)

Antenna Internal patch with provision for external connection

Storage Rechargeable battery stores real-time clock (RTC) data and
receiver configuration settings

Connections Premade cable with connector for power and data interconnections

LED functions Power on/off and navigation

Start time 30 seconds

Table 8.1 PMB-688 Features and Specifications

Figure 8.8 UART pins.

 200 B u i l d Y o u r O w n Q u a d c o p t e r

The TTL in the pin designations represents the fact that the logic levels are 0 and 5 V for
low and high levels respectively. The GPS receiver also uses a 9600-baud rate to communicate
with the controlling microprocessor to both receive and transmit data back and forth. There
is no need for a separate clock signal line, since the UART protocol is designed to be self-
clocking.

CautioN: To ensure communications with the Prop Mini module, connect the GPS TX lead to the
Mini’s P8 pin, and likewise, connect the GPS RX lead to the Mini’s P9 pin. Misconnecting these
pins will likely not cause any damage, but you will not have data communications between the
GPS receiver and the Propeller Mini module.

Initial GPS Receiver Test
It would be wise to check that the PMB-688 GPS receiver is functioning as expected before
going on to later stages in this project. Ensure that you have a good line of sight with the
open sky to be able to receive the GPS satellite signals. I used an external GPS antenna
because my test setup was indoors and had no reliable satellite reception. Parallax has an
external GPS antenna available (part number 28502) that is shown in Figure 8.9 and is well
worth the modest cost. Erratic or unreliable satellite reception will quickly cause this project
to fail.

An interconnecting cable between the GPS and the monitoring laptop will also be
needed along with a very useful Prolific USB-to-Serial software driver. The link is set up
using a USB-to-TTL serial cable that is connected to the GPS receiver cable, as shown in
Figure 8.10. This cable is available from Adafruit Industries as part number 954.

The USB/TTL cable has four pin connectors that are color coded and attached to the
matching GPS receiver’s color-coded pin connectors, as detailed in Table 8.2. The physical
solderless breadboard connections between the GPS receiver cable and the USB/TTL cable
are shown in Figure 8.11.

I used the Propeller Serial Terminal (PSerT) program with the baud rate set to 4800 to
match the GPS receiver output. Additionally, COM port 44 was automatically assigned on
the laptop by the Prolific software driver. Figure 8.12 is a screen capture of the GPS data
stream showing that the GPS receiver was properly functioning and receiving good satellite
signals.

Completing the above steps confirms that the PMB-688 GPS receiver is operating
properly, which is a prerequisite before further project development. You are almost ready to

Figure 8.9 External GPS Antenna (PMB-688).

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 201

Figure 8.10 USB-to-TTL serial link cable.

GPS Receiver Cable Color USB/TTL Cable Color Function

Black Black Ground

Blue White TXD (out of laptop)

Yellow Green RXD (into laptop)

Red Red 5 V DC

Table 8.2 GPS Receiver to USB/TTL Cable Connections

Figure 8.11 USB/TTL cable connection from GPS to laptop.

 202 B u i l d Y o u r O w n Q u a d c o p t e r

start using the GPS receiver, but first I will discuss the NMEA protocol and the messages that
are being generated from the PMB-688 GPS receiver.

NMEA Protocol
As noted previously, NMEA is the acronym for the National Marine Electronics Association,
but nobody refers to it by its formal name. NMEA is the originator and continuing sponsor
of the NMEA 0183 standard that defines, among other things, the electrical and physical
standards to be used in GPS receivers. This standard specifies a series of message types that
receivers use to create messages that conform to the following rules, also known as the
Application Layer Protocol Rules:

•	 The starting character in each message is the dollar sign.
•	 The next five characters are composed of the talker id (first two characters) and the

message type (last three characters).
•	 All data fields that follow are delimited by commas.
•	 Unavailable data is designated by only the delimiting comma.
•	 The asterisk character immediately follows the last data field, but only if a checksum

is applied.
•	 The checksum is a two-digit hexadecimal number that is calculated using a bitwise

exclusive OR algorithm on all the data between the starting ‘$’ character and the
ending ‘*’ character as well as including those characters.

Figure 8.12 Propeller Serial Terminal screen capture of a GPS data stream.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 203

There are a large variety of messages available in the NMEA standard; however, the
following subset is applicable to the GPS environment and is shown in Table 8.3. All GPS
messages start with the letters “GP.”

Latitude and Longitude Formats
The two digits immediately to the left of the decimal point are whole minutes; those to the
right are decimals of minutes. The remaining digits to the left of the whole minutes are
whole degrees.

Message Prefix Meaning

AAM Waypoint arrival alarm

ALM Almanac data

APA Auto pilot A sentence

APB Auto pilot B sentence

BOD Bearing origin to destination

BWC Bearing using great circle route

DTM Datum being used

GGA Fix information

GLL Lat/Lon data

GRS GPS range residuals

GSA Overall satellite data

GST GPS psuedorange noise statistics

GSV Detailed satellite data

MSK Send control for a beacon receiver

MSS Beacon receiver status information

RMA Recommended Loran data

RMB Recommended navigation data for GPS

RMC Recommended minimum data for GPS

RTE Route message

TRF Transit-fix data

STN Multiple data id

VBW Dual ground/water speed

VTG Vector track a speed over the ground

WCV Waypoint closure velocity (velocity made good)

WPL Waypoint location information

XTC Cross-track error

XTE Measured cross-track error

ZTG Zulu (UTC) time and time to go (to destination)

ZDA Date and time

Table 8.3 NMEA GPS Message Types

 204 B u i l d Y o u r O w n Q u a d c o p t e r

Examples
4224.50 is 42 degrees and 24.50 minutes, or 24 minutes, 30 seconds. The “.50” of a minute

is exactly 30 seconds.

7045.80 is 70 degrees and 45.80 minutes, or 45 minutes, 48 seconds. The “.80” of a minute
is exactly 48 seconds.

Parsed GPS Message
The following is an example of a parsed GPGLL message that illustrates how to analyze an
actual data message:

$GPGLL,5133.80,N,14240.25,W*75
 1 2 3 4 5 6 7

 1 GP GPS NMEA designator
 2 GLL Lat/Lon message type
 3 5133.80 Current latitude 51 degrees, 33 minutes, 48 seconds
 4 N North/South
 5 14240.25 Current longitude 142 degrees, 40 minutes, 15 seconds
 6 W East/West
 7 *75 checksum

All GPS applications use some type of parser application to analyze data messages and
extract the required information to meet system requirements.

Propeller Mini
At this point I would like to take a moment to introduce you to the Propeller Mini module,
which I used as the onboard processor for the GPS receiver. The Propeller Mini, which I will
henceforth refer to as the Mini, is a relatively new Parallax module, just introduced in 2013.
The module is very reasonable in cost and fully supports the full Propeller Spin programming
language as well as any other Propeller-compatible language. Figure 8.13 is a picture of
the Mini.

Figure 8.13 Parallax Propeller Mini module.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 205

Key details and specifications for the Mini are shown in Table 8.4. I mounted the Mini on
a solderless breadboard to gain easy access to all the general-purpose input/output (GPIO)
pins. The breadboard will also allow for easy mounting and connections to both the GPS
receiver and the XBee transceiver, which is discussed in the following section.

Radio-Frequency Transceiver Module
GPS data must be sent wirelessly from the quadcopter to a ground station where it is received
and displayed for the operator’s use. I selected XBee transceivers to perform this function,
since they are small, lightweight, inexpensive, and totally compatible with the other modules
used in this project. XBee is the brand name for a series of digital RF transceivers manufactured
by Digi International. Figure 8.14 shows one of the XBee Series 1 transceivers that I used.

There are two rows of 10 pins on each side of the module. These pins are spaced at 2 mm
between each one, which is incompatible with the standard 0.1-in spacing used on solderless
breadboards. This means that special connector sockets must be used with the XBee modules.
Fortunately, Parallax has anticipated this issue and has provided several solutions.

Features/Specifications Description

Voltage requirements Regulated 6.5–12 V DC through the VIN pin

Communication Mini USB, the Propeller Plug required for programming
(#32210, not included)

Dimensions 0.81 × 1.52 in (20.5 × 38.6 mm)

Power outputs 3.3 V DC regulated output @ 400 mA max
5 V DC regulated output @ 600 mA max

Operating temp range -40°F to +185°F (-40°C to +85°C)

GPIO pins 19, P0 to P18

Table 8.4 Key Details and Specifications for the Parallax Propeller Mini Module

Figure 8.14 XBee Series 1 transceiver.

 206 B u i l d Y o u r O w n Q u a d c o p t e r

I used two different approaches to mounting the XBee modules. The first was to use
Parallax’s XBee SIP Adapter, which is shown in Figure 8.15 with an XBee mounted on it. SIP
is an abbreviation for single inline package, which is a strange description if you look at the
adapter’s bottom edge where two rows of pins are attached. The two-pin rows are just to
provide mechanical stability, since the two pins in each row are electrically connected to
one another.

The other mounting approach is actually part of the Parallax’s Propeller Board of
Education (BOE) development board. The Parallax BOE designers thought that the XBee
would be a very popular peripheral for this board, so they incorporated two 10-pin-row
mounting sockets. The BOE is shown in Figure 8.16 with the XBee socket visible at the bottom

Figure 8.15 Parallax XBee SIP Adapter.

Figure 8.16 The BOE.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 207

center of the board. There is a microSD socket situated between the XBee sockets. The BOE
designers also included eight socket pins where key XBee pins are easily available for
interconnections. These pins are part of a 10 × 2 socket located above the right XBee socket.

I will next examine the XBee hardware to show how this clever design makes wireless
transmission so easy.

XBee hardware
All the electronics in the XBee hardware, except for the antenna, are contained in a slim
metal case located on the bottom side of the module, as may be seen in Figure 8.17. If you
look closely at the figure, you should see the bottom of the antenna wire, which is located
near the top left corner of the case. While Digi International is not too forthcoming regarding
what makes up the electronic contents of the case, I did determine that the earlier versions
of the Series 1 XBee transceivers used the Freescale™ model MC13192 RF transceiver. This
chip is a hybrid type, meaning that it is made up of both analog and digital components. The
analog components make up the RF transmit-and-receive circuits while the digital
components implement all the other chip functions. It is a complex chip, which is the reason
why the XBee module is so versatile and able to automatically perform a remarkable number
of networking functions. Table 8.5 shows a select number of features and specifications for
the MC13192.

The XBee module implements a full network protocol suite (which is discussed below in
the software section), but from a hardware perspective, it means that there must also be a
microprocessor present in the electronics case. From my research, I cannot determine which
type of microprocessor it is, but I am willing to make an educated guess that it would be a
Freescale™ chip, based upon the reasonable assumption that the MC13192 would be designed
to be highly compatible with the company’s own line of microprocessors. One other factor
supporting my guess is that Digi International has recently introduced a line of programmable
XBee modules named XBee Pro SB that use the 8-bit Freescale™ S08 microprocessor. Of
course, being able to put your own programs into the XBee would eliminate the need for the
Mini, but that would not be as much fun and would probably be a bit limiting, given the
tremendous capabilities of the Propeller chip.

Figure 8.17 XBee electronics case.

 208 B u i l d Y o u r O w n Q u a d c o p t e r

The XBee pins are detailed in a logical arrangement in Figure 8.18 for your information.
Just be aware that only four of the pins are needed for this project, and they are shown with
an asterisk next to the pin label. All the pin and function descriptions are shown in Table 8.6.

There are a considerable number of functions available to you if needed; however, this
project requires only the most minimal functions for simple and reliable data transfers.
Thankfully, the XBees automatically connect and establish reliable communications.

Features/Specifications Description

Frequency/modulation O-QPSK data in 5.0 MHz channels and full spread-spectrum
encode and decode (modified DSSS)
Operates on one of 16 selectable channels in the 2.4 GHz
ISM band

Maximum bandwidth 250 kbps (compatible with the 802.15.4 Standard)

Receiver sensitivity <- 92 dBm (typical) at 1.0% packet error rate

Maximum output power 0 dBm nominal, programmable from -27 dBm to 4 dBm

Power supply 2.0 to 3.4 V

Power conservation modes < 1 μA Off current
1 μA Typical hibernate current
35 μA Typical doze current (no CLKO)

Timers/comparators Four internal timer comparators available to supplement
MCU resource

Clock outputs Programmable frequency clock output (CLKO) for use by MCU

Number of GPIO pins 7

Internal oscillator 16 MHz with onboard trim capability

Operating temperature range - 40 to 85°C
Package size QFN-32 Small form factor (SFF)

Table 8.5 Freescale™ MC13192 Features and Specifications

Figure 8.18 Logical XBee pinout diagram.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 209

What is even more interesting than the hardware design is the data transmission and
reception protocol that XBee implements, which I will discuss in the next section.

XBee Data Protocol
The XBee uses a highly capable networking protocol named ZigBee, which is also called a
Personal Area Network (PAN). I will endeavor to keep the technical jargon to a minimum;
however, it is important that you get at least a fundamental knowledge of how the ZigBee
network functions in case something does not work as planned.

Zigbee was designed to be compliant with the ISO 7 Layer network model. As such, its
inherent design is based upon proven computer network concepts that are robust, efficient,
and well understood by most system designers. Figure 8.19 shows the ZigBee logical
network stack with the corresponding ISO layer number. All subsequent network software
developed for the ZigBee network follows this model.

Pin Number Name(s) Description

1 Vcc Power supply, 3.3 V

2 Dout Data out (TXD)

3 Din Data in (RXD)

4 DIO12 GPIO pin 12

5 Reset XBee module reset, pin low

6 PWM0/RSSI/DIO10 Pulse width modulation (PWM) Analog 0, received
signal strength indicator (RSSI), GPIO pin 10

7 DIO7 GPIO pin 7

8 Reserved Do Not Connect (DNC)

9 DTR/SLEEP_RQ/DIO8 Data Terminal Ready (DTR), GPIO Sleep Assertion
(pin low), GPIO pin 8

10 GND Ground or common

11 DIO4 GPIO pin 4

12 CTS/DIO7 Clear To Send (CTS), GPIO pin 7

13 ON/SLEEP Pin high when NOT sleeping

14 Vref Voltage reference level (used with analog-to-digital
conversion)

15 ASSOC/DIO5 Pulse signal when connected to a network, GPIO
pin 5

16 RTS/DIO6 Request To Send (RTS), GPIO pin 6

17 AD3/DIO3 Analog Input 3, GPIO pin 3

18 AD2/DIO2 Analog Input 2, GPIO pin 2

19 AD1/DIO1 Analog Input 1, GPIO pin 1

20 AD0/DIO0/COMMIS Analog Input 0, GPIO pin 0, Commissioning Button

Table 8.6 XBee Pin Descriptions and Functions

 210 B u i l d Y o u r O w n Q u a d c o p t e r

Data sent through the ZigBee network is in packets similar to the Ethernet format. Figure
8.20 shows how these packets are initially constituted at Layer 2, or MAC as it is referred to
in the figure. These packets may be subsequently modified at higher layers, as needed,
to suit the real-time network communication needs.

There are four packet types that exist in ZigBee:

1. Beacon
2. Data
3. MAC Command
4. ACK

Figure 8.19 ZigBee and the ISO network layers.

Figure 8.20 ZigBee packet formation.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 211

Actual data packets are formed at the MAC, or layer 2, level where the data is prepended
with both the source and destination addresses. A sequence number is also assigned to allow
the receiver to determine the correct sequence of received packets. It is relatively easy to
receive out-of-sequence packets in this type of network. Frame control bytes are also
appended for error checking, which is the reason why ACK packets are required. ZigBee is
a type of connection network, similar to Ethernet, that has a very robust way of ensuring that
packets get where they need to go. ZigBee Layer 3 uses acknowledgement packet (ACK).

The receiver performs a 16-bit cyclic redundancy check (CRC) to verify that the packet was
not corrupted during transmission. If a good CRC is determined, the receiver will then
transmit an ACK; this action allows the transmitting XBee node to know that the data
were received properly. The packet is discarded if the CRC indicates the packet was
corrupted, and no ACK is transmitted. The network should be configured such that the
transmitting node will resend up to a predetermined number of times until either the packet
is successfully received or the resend limit is reached. The ZigBee protocol provides self-
healing capabilities if the path between the transmitter and receiver has become unreliable
or a complete network failure has happened. Alternate paths will be established if physically
possible.

Layers 1 and 2 support the following standards:

•	 Star, mesh, and cluster tree topologies
•	 Beaconed networks
•	 GTS for low latency
•	 Multiple power-saving modes (idle, doze, hibernate)

Layers 3 and 4 further refine the packets by identifying what the packet type is, where it
is going, and where it has been. They also set the data payload and support the following:

•	 Point-to-point and star network configurations
•	 Proprietary networks

Layer 4 sets up the routing, thus ensuring that the packets are sent along the correct
paths to reach the desired nodes. This layer also ensures that:

•	 ZigBee 1.0 specifications are met
•	 Support is provided for star, mesh, and tree networks

There are also three ZigBee standards that primarily involve Layers 3 and 4. These
standards are:

1. Routing—Defines how messages are sent through ZigBee nodes. Also referred to as
digi-peating.

2. Ad hoc network—Creates a network automatically without any operator
involvement.

3. Self-healing mesh—Determines automatically if a malfunctioning node exists and
reroutes messages, if physically possible.

Layer 5 is responsible for security, which is enforced by using the Advanced Encryption
Standard (AES) 128-bit security key.

 212 B u i l d Y o u r O w n Q u a d c o p t e r

XBee Functional Test
It is now time to demonstrate how the XBee works by using a simple test configuration
between two XBee nodes and the Propeller boards controlling these nodes. Figure 8.21
shows the test configuration in which the XBee transmitter is being controlled by the Mini,
and the XBee receiver is being controlled by the BOE.

Two separate programs need to be loaded into each of the Propeller boards, one for
transmit and the other for receive. The transmit program is named Test XBee Transmit.spin,
and the source code is shown below:

OBJ
 system : “Propeller Board of Education” ‘ PropBOE configuration
 tools
 time : “Timing” ‘ Timing convenience
 methods
 xb : “XBee_Object_1” ‘ XBee communication
 methods

PUB Start
 system.Clock(80_000_000) ‘ System clock -> 80 MHz
 xb.start(7, 6, 0, 9600) ‘ Propeller Comms - RX,
 TX, Mode, Baud
 xb.AT_Init ‘ Initialize for fast AT
 command use.
 xb.AT_ConfigVal(string(“ATMY”), 8) ‘ Set MY address to 8
 xb.AT_ConfigVal(String(“ATDL”), 9) ‘ Set destination low
 address to 9

 repeat
 xb.str(string(“This is a test. “, 13)) ‘ Send a string
 time.pause(500) ‘ Wait half a second

This program and the following program were downloaded from the Parallax OBEX
forum. Both programs were very slightly modified for this project. Note that the transmit

Figure 8.21 Diagram of XBee functional test.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 213

program uses a BOE object named Propeller Board of Education and referenced as system,
which also works perfectly with the Mini board. I am constantly impressed with how well
Propeller software objects function among different development environments. It is a
testament to the simplicity and consistent architecture used in the Parallax programming
languages.

Figure 8.22 is a photo of the XBee mounted on an SIP adapter that is connected to the
Mini—all mounted on a solderless breadboard. The whole transmitter assembly is powered
by a single 9-V battery, which is also shown in the photo.

The Propeller Plug programming tool is also shown attached to the Mini in the figure. It
is needed only to program the Mini for this project. There are four connections needed
between the Mini and the XBee module, which are shown in Table 8.7. Of course, the Mini
must be powered, which in this case, is with a 9-V battery connected to VIN and GND. Be
sure you watch the polarity connection.

The transmit program will continuously send the phrase, This is a test, two times per
second. The complimentary receiver node is composed of an XBee mounted on a BOE. This

Figure 8.22 XBee and Propeller Mini transmitter node.

XBee Module Propeller Mini

+5 V 5 V

GND GND

DOUT P7

DIN P6

Table 8.7 XBee and Propeller Mini connections.

 214 B u i l d Y o u r O w n Q u a d c o p t e r

assembly is shown in Figure 8.23. Only two connections are needed between the BOE and
the XBee module, as shown in Table 8.8. The BOE is powered through the mini USB cable
that attaches to the laptop running the PSerT program, while the XBee module is powered
through the BOE sockets.

The receive program is named Test XBee Receive.spin, and the source code is shown
below:

OBJ
 system : “Propeller Board of Education” ‘ PropBOE
 configuration tools
 pst : “Parallax Serial Terminal Plus” ‘ Terminal
 communication tools
 time : “Timing” ‘ Timing convenience
 methods
 xb : “XBee_Object_1” ‘ XBee communication
 methods

PUB Go | c
 system.Clock(80_000_000) ‘ System clock -> 80 MHz
 pst.Start(115_200) ‘ Start Parallax Serial
 Terminal
 xb.start(7,6,0,9600) ‘ Propeller Comms -
 RX,TX, Mode, Baud
 xb.AT_Init ‘ Initialize for fast AT
 command use.

Figure 8.23 XBee and Propeller BOE receiver node.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 215

 xb.AT_ConfigVal(string(“ATMY”), 9) ‘ Set MY address to 9
 xb.AT_ConfigVal(String(“ATDL”), 8) ‘ Set Destination Low
 address to 8

 repeat ‘ Main loop
 c := xb.rxCheck ‘ Check buffer
 if c <> -1 ‘ If it’s not empty (-1)
 pst.Char(c) ‘ Then display the
 character

The receive program uses the same objects as the transmit program with the addition of
the Parallax Serial Terminal Plus object, which enables the display of the received data on the
laptop screen that is running the PSerT program. Figure 8.24 is a screenshot of the laptop
screen that is running the PSerT application for the data transmission test.

XBee Module Propeller BOE

DO P7

DI P6

Table 8.8 XBee and Propeller BOE Connections

Figure 8.24 XBee data transmission screenshot.

 216 B u i l d Y o u r O w n Q u a d c o p t e r

XBee Range Check
I performed a simple range check to determine the approximate operating range for the XBee
test system. The transmitter node was set on a tripod at one end of a large, open field. I then
walked away from the transmitter while carrying a laptop running the test program.
I walked approximately 114 paces from the transmitter, at which point the transmission
became intermittent. My pace is about one meter, so that was a good estimate for the reliable
range. I walked a bit further and continually repositioned the receiver node to see if the
signal could be reacquired. I was able to go out to about 154 m, at which point no amount of
node juggling could get the signal back. The 114-m distance is actually a bit better than the
stated 100-m range in the Zigbee specification.

Digi International also manufactures a line they call the XBee Pro, which generates up to
60 mW of power—much greater than the regular Series 1 power output of 1 mW. The Pro
brochure claims a line-of-sight range of up to one mile. That is an impressive range, but I am
fairly sure that it would far exceed the range of the R/C transmitter and the FPV camera
system, which will be discussed in the next chapter. In any case, I believe that the quadcopter
would be invisible to the operator at such a distance, which is never a good idea.

The range check confirmed that the XBee modules appropriately support operations at
or below 300 feet when they are above ground and reasonably close to the operator’s control
station.

Complete GPS System
A block diagram of the complete GPS system is shown in Figure 8.25.

In the complete system, unlike the test system, the PMB-688 GPS module is connected to
the Mini as the data source, and a portable display is used in lieu of a laptop for the receiver
node. Figure 8.26 shows the prototype assembly for the transmitter node as it was set up for
testing.

You should note that I changed the power source from a 9-V battery to a six pack of AA
cells. The additional current draw of the added GPS module quickly drained the 9-V battery,
while the battery pack capacity was much higher.

Figure 8.25 Block diagram for the complete GPS system.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 217

All GPS and Mini interconnections are shown in Table 8.9. All of the interconnections
between the XBee and Mini are still in place and remain as they were detailed in Table 8.7.

Note that the GPS yellow wire is named TTLTX, which means that data are output via
this wire. This yellow wire is actually the receive line, which can be a bit confusing. Just
remember that data-communication port nomenclature is usually specified from the
perspective of the module, that is, data coming out of the module is TX, while data going
into the module is RX.

The program that is run in the Mini is significantly different from the test program
shown above. It now incorporates a GPS driver object as well as the existing XBee object. It
also contains a considerable amount of code to parse, or separate, the raw NMEA data that

Figure 8.26 Prototype GPS transmitter node.

GPS Module Propeller Mini

+5 V
(Red)

5 V

GND
(Black)

GND

TTLTX
(Yellow)

P8

TTLRX
(Blue)

P9

Table 8.9 GPS and Propeller Mini Connections

 218 B u i l d Y o u r O w n Q u a d c o p t e r

is streaming from the GPS PMB-688 module. The Spin object is named GPS_Propeller, and
the code is shown below.

{{
GPS_XBee
Modified !GPS_Propeller program by D. J. Norris 2013
This program controls an Elev-8 Quadcopter real-time data system
Pin connections:
 Transmitter:
 XBee DOUT to P7
 XBee DIN to P6
 GPS Data Out to P8
 GPS Data In to P9
 Receiver:
 XBee DOUT to P7
 XBee DIN to P6
}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 XB_Rx = 7 ‘ XBee DOUT
 XB_Tx = 6 ‘ XBee DIN
 XB_Baud = 9600
 CR = 13 ‘ Carriage Return value
 GPS_Pin = 8

OBJ
 GPS : “GPS_Float_Lite”
 FS : “FloatString”
 xb1 : “XBee_Object_1”

Pub Start | fv
 xb1.start(XB_Rx, XB_Tx, 0, XB_Baud) ‘ Initialize comms for XBee
 xb1.AT_Init
 xb1.AT_ConfigVal(string(“ATMY”),8) ‘ My XBee address is set to 8
 xb1.AT_ConfigVal(string(“ATDL”),9) ‘ The remote XBee address is
 set to 9
 GPS.Init

 repeat
 xb1.Str(String(16, 1))

 FS.SetPrecision(7)
 fv := GPS.Float_Latitude_Deg ‘ Get latitude

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 219

 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Float_Longitude_Deg ‘ Get longitude
 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Float_Speed_Over_Ground ‘ Get speed
 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Float_Altitude_Above_MSL ‘ Get altitude
 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Long_Month ‘ Get month
 If fv <> floatNaN
 xb1.Dec(GPS.Long_Month)
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Long_Day ‘ Get day
 If fv <> floatNaN
 xb1.Dec(GPS.Long_Day)
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Long_Year ‘ Get year
 If fv <> floatNaN
 xb1.Dec(GPS.Long_Year)
 Else
 xb1.Str(String(“---”))

 220 B u i l d Y o u r O w n Q u a d c o p t e r

 xb1.Str(String(“,”))
 fv := GPS.Long_Hour ‘ Get Hour
 If fv <> floatNaN
 xb1.Dec(GPS.Long_Hour)
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Long_Minute ‘ Get Minute
 If fv <> floatNaN
 xb1.Dec(GPS.Long_Minute)
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“,”))
 fv := GPS.Long_Second ‘ Get Second
 If fv <> floatNaN
 xb1.Dec(GPS.Long_Second)
 Else
 xb1.Str(String(“---”))
 xb1.tx(13)
 WaitCnt(ClkFreq / 2 + ClkFreq / 4 + Cnt) ‘ Wait .75 seconds to
repeat

DAT
 floatNaN LONG $7FFF_FFFF ‘Means Not a Number

The above program uses the same XBee driver object, XBee_Object_1, as was the case in
the previous test programs. This program also uses a GPS driver object named GPS_Float_
Lite that takes care of all the necessary protocols between the GPS module and the Mini.
Retrieving data from the GPS module becomes very easy, since all that is required is to call
the GPS driver method that returns the desired data. For example, the following gets the
current GPS hour data:

fv := GPS.Long_Hour

Where fv is a local variable, GPS is the local reference to GPS_Float_Lite, and Long_Hour is
the name of the method in GPS_Float_Lite that returns the current GPS UTC hour value.
UTC is short for Coordinated Universal Time and is the time standard used to ensure that GPS
time reports become independent of any time zone.

Except for the deployed display, the receive portion of this system is the same as the one
previously described in the test system. I used the BOE with the laptop to test the prototype
system, which made sense because the portable display would not impact any essential data
transfers between the transmitter and receiver XBee nodes. The receiver-node connections
were detailed in Table 8.8, and the assembly was shown in Figure 8.23. Figure 8.27 is a laptop
screenshot showing the results of a trial run with the complete GPS system. The 10 data
elements displayed in the figure are detailed in Table 8.10 for your information. GPS data is

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 221

updated every 0.75 seconds, which allows sufficient time for the GPS module to receive a
fresh data set. Please note that the GPS module provides the coordinates in decimal degrees
with the minutes and seconds as a decimal fraction of a degree in lieu of the NMEA format
discussed earlier. It is fairly easy to make the conversion to integer minutes and seconds
using software, if that is the required format.

Figure 8.27 GPS data displayed by the PSerT application.

Element # Value Description

1 44.23784 Latitude (North)

2 -71.04572 Longitude (West)

3 0.58 Speed (m/s)

4 64 Altitude (m)

5 10 Month

6 23 Day

7 2013 Year

8 16 Hours (UTC)

9 9 Minutes

10 12 Seconds

Table 8.10 Displayed GPS data elements.

 222 B u i l d Y o u r O w n Q u a d c o p t e r

Portable Display
I used a 4 × 20 LCD for the portable display because I wanted to show only latitude,
longitude, speed, and altitude. It really is not very critical to display the date and time for
real-time quadcopter control. I used the same LCD display that I described in Chapter 7 for
the servo-signal pulse-width display. I also slightly modified the code to display the four
GPS data elements instead of the pulse widths. Inserting the LCD display code was also
quite easy, since I only had to add the LCD display-driver object and reference the input data
pin, which is P19. Incidentally, I also left the PSerT driver code in place, since I figured it
might come in handy for any debugging.

Figure 8.28 shows the LCD display with the four GPS data elements. They are repeated
twice because of the simple character-by-character transmission scheme that is being used. I
do not consider this side effect to be much of an issue.

The modified Test XBee Receive program is shown below.

{{
Test XBee Receive program modified to display both on PST and LCD
screens
D. J. Norris 2013
}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 LCD_PIN = 19
 LCD_BAUD = 19_200
 LCD_LINES = 4

OBJ
 system : “Propeller Board of Education” ‘ PropBOE configuration
 tools

Figure 8.28 LCD display.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 223

 pst : “Parallax Serial Terminal Plus” ‘ Terminal
 communication tools
 time : “Timing” ‘ Timing convenience
 methods
 xb : “XBee_Object_1” ‘ XBee communication
 methods
 lcd : “debug_lcd”

PUB Go | c

 pst.Start(115_200) ‘ Start Parallax
 Serial Terminal
 xb.start(7,6,0,9600) ‘ Propeller Comms -
 RX, TX, Mode, Baud
 xb.AT_Init ‘ Initialize for fast
 AT command
 xb.AT_ConfigVal(string(“ATMY”), 9) ‘ Set MY address to 9
 xb.AT_ConfigVal(String(“ATDL”), 8) ‘ Set Destination Low
 address to 8

 if lcd.init(LCD_PIN, LCD_BAUD, LCD_LINES) ‘ init returns True
 if started
 lcd.cursor(0) ‘ cursor off
 lcd.backLight(True) ‘ turn on backlight
 lcd.cls ‘ clear display
 lcd.str(string(“GPS Real Time Display V1.0”)) ‘ welcome
 screen
 waitcnt(clkfreq + cnt) ‘ wait 1 second
 lcd.cls ‘ clear the screen
 again
 waitcnt(clkfreq/2 + cnt) ‘ wait .5 seconds

 repeat ‘ Main forever loop
 c := xb.rxCheck ‘ Check buffer
 if c <> -1 ‘ If it’s not
 empty (-1)
 pst.Char(c) ‘ Then display the
 character on the
 serial terminal
 lcd.putc(c) ‘ Display the same
 character on the
 LCD screen

I chose to connect the LCD display to pin 19 because that is also a BOE servo port. That
way, I could use a servo cable to connect the LCD display with the BOE as I did in Chapter 7.

 224 B u i l d Y o u r O w n Q u a d c o p t e r

The transmit code was modified to transmit only the four GPS data elements discussed
above. I also eliminated the commas between the data elements to conserve space on the
LCD display. The modified transmit program named GPS_XBee_Brief is shown below.

{{
GPS_XBee_Brief
Modified !GPS_Propeller program by D. J. Norris 2013
This program controls an Elev-8 Quadcopter real-time data system
This brief edition transmits only four data elements:
 Latitude
 Longitude
 Speed
 Altitude

Pin connections:
 Transmitter:
 XBee DOUT to P7
 XBee DIN to P6
 GPS Rx to P8
 GPS Tx to P9
 Receiver:
 XBee DOUT to P7
 XBee DIN to P6
}}
CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 XB_Rx = 7 ‘ XBee DOUT
 XB_Tx = 6 ‘ XBee DIN
 XB_Baud = 9600
 CR = 13 ‘ Carriage Return value
 GPS_Pin = 8
OBJ
 GPS : “GPS_Float_Lite”
 FS : “FloatString”
 xb1 : “XBee_Object_1”

Pub Start | fv
xb1.start(XB_Rx, XB_Tx, 0, XB_Baud) ‘ Initialize comms for
 XBee
xb1.AT_Init
xb1.AT_ConfigVal(string(“ATMY”),8)
xb1.AT_ConfigVal(string(“ATDL”),9)
GPS.Init

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 225

 repeat
 xb1.Str(String(16, 1))

 FS.SetPrecision(7)
 fv := GPS.Float_Latitude_Deg ‘ Get latitude
 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“ “))
 fv := GPS.Float_Longitude_Deg ‘ Get longitude
 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“ “))
 fv := GPS.Float_Speed_Over_Ground ‘ Get speed
 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.Str(String(“ “))
 fv := GPS.Float_Altitude_Above_MSL ‘ Get altitude
 If fv <> floatNaN
 xb1.Str(FS.FloatToString(fv))
 Else
 xb1.Str(String(“---”))

 xb1.tx(13)
 WaitCnt(ClkFreq / 2 + ClkFreq / 4 + Cnt)

DAT
 floatNaN LONG $7FFF_FFFF ‘ Means Not a Number

Mounting the Transmitter XBee Node
Figure 8.29 shows the front of the XBee transmitter node assembly. I wanted to use the XBee
SIP-mounting adapter but did not want to mount it vertically in a solderless breadboard.
I was concerned about the quadcopter vibrations shaking loose the somewhat top-heavy
XBee assembly. After a bit of thought, I came up with the configuration that you see in the
figure, where the SIP assembly is still plugged into a breadboard. However, the breadboard
itself is attached by foam-backed, double-sided tape to another breadboard that holds the
Mini. I also put a hidden spacer between the SIP adapter and the horizontal breadboard to

 226 B u i l d Y o u r O w n Q u a d c o p t e r

increase the overall rigidity of the assembly. The GPS module is mounted to the back of the
vertical breadboard, as you can see in Figure 8.30.

The GPS is held in place by the double-sided tape that is normally attached to the bottom
of new breadboards. You should be aware that a vertically mounted GPS module with an
internal antenna is not as sensitive to satellite signals as a horizontally mounted one is. You
might want to initially hold the quadcopter on its side with the flat side of the GPS antenna
pointed to the sky until a signal is acquired. Once the receiver locks on to the satellite signal,

Figure 8.29 Front of the XBee transmitter node.

Figure 8.30 The back of the XBee transmitter node.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 227

the red LED will be steady instead of blinking. The receiver’s hold sensitivity is much better
than the acquisition sensitivity, so the quadcopter can be put back to a horizontal position
while still locked onto the GPS signals.

Moving Map System

Note: The original intent of this section was to demonstrate how to display the quadcopter’s
position in real time by using the Google Earth application. Unfortunately, I was never able to
stream the raw GPS data successfully from the XBee transmitter to the ground-station XBee
receiver, and then into a laptop running Google Earth. However, I do show you how to manually
enter the coordinates as they are displayed on the LCD screen so that you can have a near real-
time location service.

I selected the Google Earth application for the moving map display because it
incorporates a very convenient interface that accepts serial GPS coordinates and can display
them on a computer screen in real time. This project was divided into several phases so that
I could experiment with the various technologies involved with the moving map and
determine how to best implement each phase. The first phase was simply to use an existing
hand-held GPS device plugged into a laptop running the Google Earth application.

Monitoring the Quadcopter Position
with the Google Earth Application
Figure 8.31 shows the Google Earth opening screen. I ran the application on a Win7, 11.3-in,
and 32-bit Toshiba laptop. You next have to click on the Tools menu bar selection to access
the GPS import function. Figure 8.32 shows the real-time GPS menu selection.

Figure 8.31 Google Earth opening screen.

 228 B u i l d Y o u r O w n Q u a d c o p t e r

Ensure that the NMEA box is checked because it is the data format used by the
majority of GPS receivers. Google Earth also has a very nice feature that scans all the
available serial ports in order to identify the active one with the serial GPS data. You can
observe this behavior simply by plugging a GPS receiver into a computer’s USB port. I
used an older style GPS receiver that is shown in Figure 8.33 to provide the GPS data
stream.

You can also see in the figure a portion of the older-style RS-232 cable that plugs into the
back of the receiver. This type of cable requires an RS-232-to-USB converter to make it
compatible with a modern USB port. I used one of the ubiquitous converters commonly
available at local office supply stores to adapt my old-style cable.

 Figure 8.34 shows the results of a real-time import using the GPS12 receiver plugged
into the laptop. The bulls-eye Position indicator shown in the figure was automatically
added by the application. Also, the 8000-ft altitude for the view seems to have been
automatically selected by the Google Earth program. I tried to lower it, but it reverted to the
higher altitude, as shown in the figure. I don’t believe this view altitude will be too much of
an issue because the 8000-ft, above-ground altitude is a good compromise between detail
and overall area coverage. In addition, the 4-second polling interval is a reasonable number,
since the Elev-8 should not travel too far in a 4-second period.

Figure 8.32 Real-time GPS menu screen.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 229

Manual Entry of Position Coordinates into Google Earth
Entering coordinate data into Google Earth is very easy. Simply type the coordinates into the
Search text box, and press the Enter key or click on the Search button. For example, I entered
the following coordinates, using the decimal-degree format, into the Search text box:

42.23978 N 71.04598 W

Figure 8.33 Garmin GPS12 receiver.

Figure 8.34 Real-time position screenshot.

 230 B u i l d Y o u r O w n Q u a d c o p t e r

Ensure that there is one space between each element and that descriptors N and W are
also present. Of course, the N and W descriptors will change depending upon where you
operate the quadcopter. Figure 8.35 shows the resultant Google Earth screen when the above
coordinates were entered into the Search text box.

This section completes my discussion of how to achieve good situational awareness
when operating the quadcopter while using a real-time GPS system. The next chapter shows
you how to add real-time video capability that will greatly complement this GPS system.

Summary
I began the chapter with a brief history of the GPS system followed by a tutorial that used a
fictitious example to explain the basic underlying principles governing the system.

The PMB-688 GPS receiver was discussed next, focusing on its excellent receiver
characteristics as well as its easy serial communication link.

I discussed how to set up and test the GPS module with a serial-console link by using a
USB/TTL cable. The Propeller Serial Terminal (PSerT) was run on a Windows laptop to
verify proper operation of the GPS module.

The NMEA 0183 protocol was thoroughly examined to illustrate the rich set of messages
that are created by the GPS receiver. This project uses only a small subset of the data, but you
should be aware of what is available for potential use. A look at a parsed GPS message was
also included along with a brief explanation of how to interpret latitude and longitude data.

The next item introduced was the new Propeller Mini, which is a very compact Parallax
Propeller development module. This module supports the full Spin language with a full
complement of general-purpose input/output (GPIO) pins. I used the Mini as an onboard
controller for both the GPS module and an XBee RF transceiver.

I also carefully explained Zigbee, which is the XBee data communication protocol. It is
important to understand how Zigbee works because it is a key part of the control program
that runs in the controlling microcontroller.

Figure 8.35 Google Earth screenshot.

 C h a p t e r 8 : G P S a n d a R e a l - T i m e S i t u a t i o n a l D i s p l a y 231

The XBee functional test demonstrated how simple it is to set up a communications link
that could transfer GPS data. The operational software for both the transmitter and receiver
nodes was described, and I determined the operational range for the XBee link, which is
compatible with the Elev-8 operating profile.

Next, we looked at a complete GPS system and the modified software for the transmitter
node. I showed how the system displays GPS data on a PSerT screen and on a portable LCD
display. The latter display makes it easy to use in a field-deployable ground station.

I showed a compact design for an onboard GPS/XBee module that may be easily
mounted on an Elev-8. The design is resistant to disruptions that might be caused by
quadcopter vibrations.

The chapter concluded with a look at how to use the Google Earth application with real-
time GPS. I explained how easy it is to enter GPS coordinates manually into Google Earth to
show the quadcopter’s position in the application.

This page intentionally left blank

chapter 9
Airborne Video

Systems

Introduction
In this chapter I will discuss two video systems that could easily be carried aloft by an Elev-8
or other quadcopter outfitted with a similar lifting capacity. The first system can record
video and stream it back to the operator. It is often referred to as a first-person video (FPV)
because the operator can use it to view where the quadcopter is going in real time. The FPV
used in this chapter is mounted on the tiltable platform described in Chapter 7. By tilting the
camera downward, toward the ground, it is possible to observe the ground while hovering.
This capability is highly useful for security purposes as well as for activities, such as search
and rescue, damage assessment, or wildlife monitoring.

The second video system is a much less expensive one that also transmits real-time
video, although the quality of the video is much lower than that of the first system. It also
does not have any video-recording capability. However, it is well suited to providing a video
source to a post-processing software suite that will be demonstrated later in the chapter.
I will refer to this second system as the economy system when I discuss it later.

GoPro Hero 3 Camera System
I selected the GoPro Hero 3 Silver edition as the video camera to use in the first system. The
Hero 3 line of video cameras is highly popular for use in this type of application as well as
in many others, as the large number of YouTube videos produced by this camera system will
attest to. I selected the Silver edition as a compromise between cost and features. Table 9.1 is
a comparison of the features present in the three currently available versions of the Hero 3
camera.

The Black version is the most feature-packed, and judging from my review of Web blogs,
seems to be the most popular. However, the Silver edition was more than adequate for this
airborne video application, and the extra money I saved was put to use in other project areas.

The camera is shown outside of its protective case in Figure 9.1. It is a remarkably simple
camera with just a few controls. The designers realized that most users would not adjust the
camera while they were using it, unlike the users of a digital single-lens reflex (DSLR) who
constantly adjust or fiddle with the camera. Figure 9.2 is a diagram of the camera front that
contains most of the controls.

233

 234 B u i l d Y o u r O w n Q u a d c o p t e r

Several controls are multipurpose, which minimizes the total number of separate camera
controls. The Power/Mode button performs both activities that the name suggests: it powers
the camera on or off and selects a mode menu. The Shutter/Select button either starts or
stops a video; takes individual photos or photo bursts; and starts or stops time-lapse photos.
It also serves as a menu item selector in conjunction with the Power/Mode button, which
selects the overall menu to be used.

Figure 9.3 is a diagram of the back of the Hero 3 camera that shows several features,
including the important WiFi button, which only turns the WiFi on or off. All configuration
of the wireless channel is done through the menu system. There is also a blue LED on the
front of the camera that will flash if the WiFi link is on.

A Hero port that is available for plugging in certain accessories is also shown in Figure
9.3. A popular accessory is the LCD backpack, which is shown in Figure 9.4. The backpack
makes it possible for users to view their photos and videos quickly without using a computer.

The Hero 3 has a simple optical system that is made up of a lens with a very small focal
length, as shown in the Figure 9.5 diagram. This very small focal-length lens results in a very
wide field of view (FOV), which is specified in the Hero 3 documentation as 170°. A lens with
such an ultra-wide FOV is sometimes referred to as a fisheye lens, although the Hero 3 lens
does not have the same extreme distortion as a true fisheye lens. Figure 9.6 shows several
photos taken with a Hero 3 Black Edition in which this distortion is quite evident by the
curved horizon. Technically, the fisheye distortion is known as barrel distortion.

The two original sample photos have also been post processed by imaging software that
eliminates the inherent distortion. These photos are marked as “Corrected” in the figure.

Model Pixels
(MP)

Photo
Burst

Ultra
Wide

Wide Medium Narrow Protune

White 5 3 x x

Silver 11 10 x x x x

Black 12 30 x x x x x

Table 9.1 Comparison of Hero 3 Camera Versions

Figure 9.1 GoPro Hero 3 camera.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 235

Figure 9.2 Diagram of a Hero 3 camera front.

Figure 9.3 Diagram of a Hero 3 camera back.

Figure 9.4 LCD backpack.

 236 B u i l d Y o u r O w n Q u a d c o p t e r

Some people enjoy the mild fisheye distortion, since it adds a unique character to the Hero 3
photos. It should also be noted that it is probably impractical to correct any video distortion
because of the enormous post-processing requirements that this would entail. Processing
each video frame that is output at a 30 frames per second (FPS) rate would quickly result in a
huge task.

Figure 9.5 Hero 3 optical system.

Figure 9.6 Hero 3 sample photos.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 237

There is also the issue of choosing FOV versus close-up details, often referred to as
telephoto. In Figures 9.7 to 9.11, you will see the series of photos I made in my back
meadow. It illustrates the tradeoff between using FOV or telephoto with a Canon DSLR
camera fitted with an 18- to 270-mm telephoto lens. The focal length is the only variable
that was changed in each of the photos to illustrate how the FOV rapidly reduces as the
focal length increases.

You can clearly see from this series of photos that the detail rapidly diminishes as the
FOV expands. Figure 9.12 is another interesting example of this effect. It is an evening
cityscape of Vancouver, BC, courtesy of Snapshot.com and photographer Darren Stone.

The Hero 3 optical system does not have any physical means to alter or change the focal
length; hence, the optical FOV is fixed. It can, however, alter the FOV electronically by
selecting different areas of the imaging sensor and expanding the selected pixels to fill the
total image. This feature is shown in Figure 9.13, which shows the same scene taken on a
Greek island in wide, medium, and narrow FOVs.

I next decided to test the Hero 3 camera to see how it handles very close-up photography.
I used the classic Indian-Head test pattern that was widely used in the early days of
monochrome, or black and white, television of the 1950s. This pattern is shown in Figure 9.14.

I took the photo shown in Figure 9.15 with the front of the Hero 3 lens only 4 cm (1.6 in)
from the test pattern. You can clearly see the severe barrel distortion that happens when a
Hero image capture is taken very close to the camera. The distortion lessens considerably as
you separate the camera from the object being photographed. I also used the Adobe
Photoshop lens-correction tool to see if the photo distortion could be somewhat mitigated. It
was, to a small extent, as you can see in Figure 9.16.

Figure 9.7 Focal length of 18 mm.

 238 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 9.9 Focal length of 100 mm.

Figure 9.8 Focal length of 50 mm.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 239

Figure 9.10 Focal length of 200 mm.

Figure 9.11 Focal length of 270 mm.

 240 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 9.12 Vancouver cityscape with various FOVs. (Photo by Darren Stone, courtesy of
Snapshot.com)

Figure 9.13 Greek island photos with different FOVs. (Adapted from www.youtube.com/
watch?v=RUJ54EXjNCM)

Figure 9.14 Test pattern image.

http://www.youtube.com/watch?v=RUJ54EXjNCM
http://www.youtube.com/watch?v=RUJ54EXjNCM

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 241

My only conclusion from the test result is that the Hero 3 is best used with a fair amount
of distance between the lens and any object to be videoed or photographed. Fortunately, this
will be the standard situation when the Hero 3 is mounted on the Elev-8.

Hero 3 WiFi-Range Test
I considered it to be very important to determine the maximum range from which the Hero
3 could be remotely operated with an Android tablet that is using the WiFi channel. WiFi
range is dependent primarily on these three factors:

1. Environment
2. Protocol
3. Transmitter power

Figure 9.15 Hero 3 test-pattern image capture.

Figure 9.16 Photoshop post-processed Hero 3 test-pattern photo.

 242 B u i l d Y o u r O w n Q u a d c o p t e r

The environment is either indoors or outdoors. I selected the outdoor environment,
since that is the area where I will usually operate the Elev-8. In addition, I will try to always
have the quadcopter in my line of sight, since that also maximizes the range.

The second factor is related to the specific WiFi protocol that is to be used. The common
protocols are IEEE 802.11a/b/g/n. The Hero 3 WiFi uses the Artheros AR6233 chip that
supports all the common a/b/g/n protocols. The Android tablet I chose for the test has a “b”
WiFi, which means that the maximum range is no more than 140 m (153.11 yd).

The last factor deals with the effective power radiated from the GoPro WiFi transmitter.
This is impossible to know unless you dissect a GoPro, which is exactly what somebody did.
Go to the website http://www.ifixit.com/Teardown/GoPro+Hero3+Teardown/12457/1
and see how the folks at iFixIt tore apart a Hero 3 Black Edition.

The actual test was very simple. I set the GoPro on a tripod in my back meadow and
established a WiFi connection with an Android tablet that was running the free GoPro app.
I clicked on real-time preview and saw myself on the tablet screen. I then moved away from
the camera until I lost contact. This happened at about 100 m (109.36 yd) from the camera
and tripod setup. This test was direct line of sight. I next walked back toward the setup to
reestablish the communications link, which occurred at 100 m (109.36 yd). I took a picture at
this point, which is shown in Figure 9.17.

I circled myself in the photo because it is very difficult to discern any details at that
distance. I then walked 50 m (54.68 yd) toward the setup and took another picture, which is
shown in Figure 9.18. This figure confirms both reliable communications at the maximum
distance that I will be flying the Elev-8 and the maximum detail I could expect to see on the
ground. Notice that I had to circle myself in the figure again, since it is still difficult to pick
out distinct objects.

Figure 9.17 The 100-m (109.36-yd) range check.

http://www.ifixit.com/Teardown/GoPro+Hero3+Teardown/12457/1

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 243

Ground Station
Ground station and ground control station (GCS) are general terms used to describe the means
by which a quadcopter is controlled by a user. Normally, the GCS is just the R/C transmitter
that an operator with visual contact uses to control the quadcopter. This approach becomes
a bit more complicated when FPV capability is added. Now, the operator needs to have a
video monitor available as an option rather than always maintaining a direct line of sight
with the aircraft. Add in some telemetry, and the GCS can rapidly expand to become quite
complex. My first attempt at creating a GCS will be to add a WiFi-enabled Android tablet to
the Spektrum DX-8 transmitter and house both of them in an aluminum case. This setup
allows the operator to use the DX-8 and simultaneously view the tablet screen while walking
around. This simple GCS is shown in Figure 9.19 with a lanyard attached. This allows it to
be easily managed in a hands-free manner.

The Spektrum telemetry is also displayed in the DX-8 LCD screen, which helps minimize
the number of displays needed for this GCS. Using the DX-8 and Android tablet should
suffice for most quadcopter operations that are held in a relatively restricted area. Operations
in a wider area may become more problematic because it is very easy to lose situational
awareness if you are out of line of sight with the quadcopter.

Incorporating the remote GPS data system described in Chapter 8 would help improve
the operator’s situation awareness. That system continuously transmits latitude, longitude,
speed, and altitude back to a ground receiver. The received data is than displayed on an LCD

Figure 9.18 50-m (54.68-yd) range check.

 244 B u i l d Y o u r O w n Q u a d c o p t e r

screen. The receiver, LCD display, BOE controller, and battery easily fit into the aluminum
case shown in Figure 9.19.

A moving-map display from a laptop running Google Earth can show the quadcopter’s
position in real time. Relying on this display would be the ultimate way to improve
operational awareness. However, this mode of operation would likely involve another
operator who is available to continually input the latitude and longitude data that was being
sent from the quadcopter. It would be too much of a workload for a single operator to both
control the quadcopter and enter data, analogous to texting while driving.

Economy Video System
The FPV system creates excellent, high-definition video, but it is quite expensive. This
section looks at a much less costly alternative that can provide adequate real-time video but
does not have video-recording capability; however, I will discuss how such a capability can
be provided for at the receiving end. This economy system is typically one-fifth to one-sixth
of the cost of the GoPro system. Figure 9.20 shows the camera-transmitter module used in a

Figure 9.19 Simple GCS.

Figure 9.20 The RC310 camera-transmitter module.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 245

system named the RC310. It is an inexpensive wireless 2.4-GHz camera system that is
currently available from a number of online suppliers.

It is powered by a regular 9-V battery, as shown in the figure. It has an adjustable lens
with a medium focal length, which is very different from the short focal length of the GoPro
camera. Figure 9.21 is a close-up of the camera’s front in which you can see the very small
2-mm diameter lens. The GoPro lens by comparison is 14 mm in diameter.

The small diameter of the RC310 camera lens means that the RC310 has a limited light-
gathering capability. It will not perform well in poor lighting conditions; but this should not
matter since the camera will normally be used in daylight conditions.

I took the photo shown in Figure 9.22 with the front of the RC310 camera lens 44.2 cm
(17.4 in) from the Indian-Head test pattern. There is very little barrel distortion evident in the
figure; however, the detail is quite fuzzy, which is due to the limited amount of pixels present
in the camera sensor. Table 9.2 details the camera specifications.

Figure 9.21 Close-up of the RC310 camera.

Figure 9.22 RC310 test-pattern image capture.

 246 B u i l d Y o u r O w n Q u a d c o p t e r

The overall quality is essentially sub-VGA at 480 × 240 pixels, which means that this
camera will not provide a detailed image when video is taken at a reasonable distance. But
that is fine because this system was never designed for use with this type of application.
I will show you later how to get some unusual and useful results from the video by using
some clever post processing. Before getting to that, I want to discuss the receiver portion of
the economy video system.

Figure 9.23 shows the receiver along with the video-capture module that is needed to
capture the video frames for post processing.

Table 9.3 details the features and specifications for the RC310 receiver. The receiver was
set to channel 1, which seemed to function well with little interference from other 2.4-GHz

Features/Specifications Description

Sensor ¼-in CMOS

Pixels 628 (H) × 582 (V)
510 (H) × 492 (V)

Dimensions 2.2 × 3 × 2 cm

Power requirement 5 V DC

Operating temp range -20°C to +60°C
Signal system NTSC

Scanning frequency 50 Hz or 60 Hz

Minimum illumination 3.0 Lux (F1.2)

Transmission range 150–200 m

Table 9.2 RC310 Camera Features and Specifications

Figure 9.23 RC310 receiver and an EzCap USB video-capture module.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 247

devices in the area. In addition, no configuration is required between the camera and the
receiver, which is a very nice feature. A slide switch on the side of the receiver selects
the operating frequency. The camera must also be set to the same frequency selected on the
receiver. This is accomplished by setting two very small slide switches located on the back of
the camera. These switches are shown in Figure 9.24.

The EzCap video-capture module, shown in Figure 9.23, is required for the interface
between the RC310 receiver analog outputs and the laptop’s digital USB input. Installing the
USB driver is all that is required to use this video-capture device. It is totally transparent in
its operation and shows up on the Windows Device Manager as a USB 2861 device in the
sound, video, and game controllers category. This designation will be needed when you
configure the post-processing software. Figure 9.25 shows how this versatile device can be
used in a variety of different applications if you desire to do so.

Features/Specifications Description

Frequency channel 1—2.414 GHz
channel 2—2.432 GHz
channel 3—2.450 GHz
channel 4—2.468 GHz

Valid pixels 480 (W) × 240 (H)

Dimensions 9.6 × 7.9 × 3 cm

Power requirement 12 V DC

Operating temp range 0°C to +40°C
Modulation GFSK

Audio output 10 kΩ/200 m Vp-p

Table 9.3 RC310 Receiver Features and Specifications

Figure 9.24 RC310 camera frequency selection switches.

 248 B u i l d Y o u r O w n Q u a d c o p t e r

Post-Processing Software
The term post processing refers to subjecting a video or photograph that is already stored in a
compatible file format to some type of image processing to enhance or extract desired
features. This definition is best explained through an example, but first I will discuss the
software used in post processing.

RoboRealm
A post-processing application that can be used in image analysis, computer vision, and
robotic vision systems is named RoboRealm. Its startup screen is shown in Figure 9.26.

Figure 9.25 The EzCap video-capture configurations.

Figure 9.26 RoboRealm start-up screenshot.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 249

Three main sections of this application deal with different aspects of image processing.
The center section is where the processed image appears. The image shown in Figure 9.26
has not been processed, so it appears in its original, or raw, state. The section to the left is
where you can select one or more processing options to apply to the image displayed in the
center section. The bottom, center section shows, in sequence, all the processing effects that
have been applied to the image. If it is applicable, parameter data will also appear in
this section.

The RoboRealm application must be configured for the appropriate video source before
any image processing takes place. Ensure that the EzCap device is plugged into a USB port
before you start RoboRealm. Next, start the application, and click on the Camera button that
is in the menu bar at the bottom of the center section. Then click on the Options button on
the menu bar at the top of the center section, and select the Video tab when the Dialog box
appears. A Camera Source selection textbox should appear as shown in Figure 9.27.

In my case, there were three selections shown. I chose the WDM 2861 Capture, which is
the logical name for the EzCap device. That should do it, and you should see live video in
the center section. At this point, you can actually process the live video stream if you desire.
To demonstrate this, I chose a filter in the Canny edge detection operation from the left hand
column and simply double clicked it. The results are shown in Figure 9.28.

Figure 9.27 Camera Source selection textbox.

 250 B u i l d Y o u r O w n Q u a d c o p t e r

Fourteen different edge filter selections appear when the + symbol is clicked on the
Edges content selection. Other content selections will have multiple selections associated
with them. At first glance, this would appear to be a bit overwhelming with so many different
selections; however, you will likely use only a few to achieve what you want. The RoboRealm
designers created a highly capable image-processing system that meets many different user
needs. Incidentally, the Canny Edge Detector will be explained in greater detail later in
this section.

An inherent problem with processing live video is that the original image is constantly
changing, which makes it difficult to assess what the effect of multiple filter operations on
an image will be. That is why I strongly recommend that you take a snapshot of the video
and apply the processing to that image. In that way, you not only retain the original image,
but you can also save separate images of all the processed images. To take a snapshot, simply
click on the Snap button located on the bottom menu bar, and enter a name for the snapshot
when prompted.

Figure 9.29 is a snapshot of my Elev-8 that I captured from a video taken with the RC310
camera. I will use this snapshot as the raw image to demonstrate a few of the image-
processing algorithms.

The Histogram
The first processing effect I will show is the histogram, which is probably the algorithm that
will be familiar to most readers. Many DSLRs have histogram displays to help photographers
determine if their photos are properly exposed. The display is a small graph of vertical lines
that show the distribution of all the red, green, and blue (RGB) pixel intensities contained

Figure 9.28 Live video filtered by a Canny edge algorithm.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 251

within the image. What you normally should look for is a distribution that is reasonably
centered on the horizontal intensity scale, which in this case goes from 0 to 255. This range
reflects the range values for eight-bit pixel intensity. Figure 9.30 shows the RGB histogram
for the Elev-8 snapshot.

Outline Edge Extraction
The next effect is a little more complicated. I want to extract the Elev-8 outline from the raw
image. This processing algorithm examines all the pixel values on a specific line in the image

Figure 9.29 Elev-8 snapshot.

Figure 9.30 Elev-8 RGB histogram.

 252 B u i l d Y o u r O w n Q u a d c o p t e r

in a window and tests them to determine if the average intensity differs from a preset value
or not. A radical change in value usually indicates that an edge is present at the center point
where the windowed pixels are located. This algorithm is applied over all the lines that
make up the image being processed. Figure 9.31 shows the Elev-8 snapshot processed to
extract an outline.

You can also see in the figure that I selected a window size of 4 pixels, which is a good
value. Any larger values will tend to make the edges less distinct, and smaller values will
make the edges too intermittent and choppy. Selecting the correct parameters is almost
always a process of trial and error, but that is in part why this field is so interesting.

Negative and Other Adjustments
Another interesting effect is the negative algorithm, an example of which is the negative
snapshot of the Elev-8 shown in Figure 9.32. This effect is found in the Adjust Content
category. The selections in the Adjust Content category are as follows:

•	 Camera_Properties
•	 Contrast
•	 Gamma
•	 Intensity
•	 Negative

Clicking on each one opens an additional variety of adjustments and settings that can be
made to optimize a specific video-capture device. I was very impressed with RoboRealm’s
functionality with regard to camera setting. While I am not suggesting that RoboRealm

Figure 9.31 Elev-8 outline edge extraction.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 253

could replace Adobe Photoshop, I will say that RoboRealm seems to contain many of the
same camera adjustments that are found in the more expensive Photoshop application as
well as a few that are missing in the much more expensive program.

Canny Edge Detection
Edge detection is important because it facilitates shape detection and object separation.
I selected the Canny edge detector as a representative image-processing algorithm that
RoboRealm efficiently executes. This algorithm is named after John Canny who first
published it in 1986. He wanted to create what he termed an optimal edge detector, one that
would perform better than the many in existence at that time. His algorithm is a multistep
one that I summarize below:

1. Noise reduction—This first step deliberately introduces a slight amount of blurring in
the raw image through a Gaussian distribution that is convolved with the original
image. The purpose is to eliminate or drastically reduce the effects of single noisy
pixels.

2. Determination of intensity gradients—This next step determines the direction through
which the edge or intensity gradient travels.

3. Non-maximum suppression—This step is essentially an edge-thinning technique. It
uses an iterative approach that applies a 3 × 3 pixel filter to the edge that was
determined in the previous step, which further refines that edge.

4. Edge tracing and hysteresis thresholding—This final step follows the intensity gradient,
or edge, by ensuring that it is continuous or really the end of the edge. Once finished,
every image pixel is marked as being either an edge or a non-edge.

The next two figures are from Wikipedia showing how the Canny edge detection works.
Figure 9.33 is the original, unprocessed image of valves that are part of a steam engine. This
figure contains many distinct edges and is a real test of the Canny algorithm.

Figure 9.32 Elev-8 negative.

 254 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 9.34 shows the post-processed image for the steam-engine valves. I did notice
that edge detection was not particularly successful in the portions of the image that had poor
contrast. For instance, look at Figure 9.35 where I circled the vertical pipe coming out of
the engine.

If you look at the same area in Figure 9.34, you can easily see the edges where the pipe
exits the engine cover and turns downward. The curved edges are readily detected by the
Canny edge detector. However, as the pipe descends, the contrast in the original image
becomes much poorer, and the edges disappear, as is evident in Figure 9.34. It is just
something to be aware of when post processing images. It is important to get as much light
on the subject as possible and to maximize all edge contrasts for best results.

Figure 9.33 Steam-engine valves, the original image. (Source: Wikipedia)

Figure 9.34 Canny edge detection on the steam-engine valves. (Source: Wikipedia)

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 255

I also processed the original unprocessed image in Figure 9.33 through the RoboRealm
Canny edge detector just to compare the results to the Wikipedia image in Figure 9.34.
Figure 9.36 shows the result, which is very similar to Figure 9.34.

I will now show you the Elev-8 Canny-edge-detector image now that you know a little
bit about this technique. Figure 9.37 is the processed Elev-8 image.

When I compared Figure 9.31, which is the outline technique, to Figure 9.37, it was
apparent that the Canny approach produced more distinct edges than the outline approach
did. The outline image seems to contain a substantial number of non-edge pixels, which I
presume is a result of the simplistic, edge-detection algorithm that I discussed previously.

Figure 9.35 Vertical pipe.

Figure 9.36 RoboRealm Canny edge detection on the steam-engine valves.

 256 B u i l d Y o u r O w n Q u a d c o p t e r

Field Test of the RC310 System with Post Processing
To conduct a field test, I placed a bicycle near some vegetation and took some video to be
post processed. Figure 9.38 shows the bicycle resting in some vegetation about 30 m (32.8 yd)
away from the camera. The bicycle is identifiable in the image more by the blue color of the
frame than by its shape. It still takes a bit of concentrated viewing to distinguish the bicycle
from the background. Now, look at Figure 9.39, which is the same image but after it has been
post processed by applying the outline-edge-detection algorithm.

Figure 9.37 RoboRealm Canny edge detection on Elev-8.

Figure 9.38 Test image of the bicycle.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 257

Now you should be able to see the fence in the foreground, the trees in the background,
and the bicycle frame. I was fairly sure that the bicycle wheels would not be detectable
because of the poor contrast and limited pixel resolution. It is important to recognize that
the frame shape is out of context with its surroundings, thus making it easier to detect. By
out of context, I am referring to the vertical trees and fence sticks as well as the horizontal
fence parts. The frame is conspicuous because it has edges that are neither vertical nor
horizontal and are contiguous, or close together. This edge characteristic makes the object
identification a bit easier and is one of the cornerstones that experts in airborne video
surveillance constantly use.

I also decided to apply the Canny edge detection to the test image of the bicycle. Figure
9.40 is the result. Believe it or not, although the bicycle frame is in the image, it is just about
invisible because of the default Canny parameters that were initially used. After some
parameter adjustments, I was able to obtain the results shown in Figure 9.41.

Yes, the only edges showing in the figure belong to the bicycle frame! It really is quite
amazing what can be accomplished when you use clever image-processing techniques.
Admittedly, I had to play around with the parameters until I achieved this remarkable result.
The Gaussian Theta setting had to be changed from 1.0 to 1.5. This setting occurs in step 1 in
the Canny algorithm that deals with pre-blurring. The other change I made was to raise the
High Threshold from 30 to 83. The threshold settings occur in step 3 in the algorithm.

Higher Resolution Test Image
I decided to repeat the test-image experiment with a DSLR image instead of one from the
economy camera. My goal was to determine what effects image quality would have on edge
recognition. Unsurprisingly, it turned out that image quality has a significant effect on edge
detection. Figure 9.42 is another picture of the bike, this time taken with a Canon 40D
equipped with a 70- to 200-mm telephoto lens.

Figure 9.39 Test image of bicycle after outline edge detection.

 258 B u i l d Y o u r O w n Q u a d c o p t e r

This image has been significantly resized to match the economy image. I applied the
outline edge detector first, as I had done in the first test. Figure 9.43 is the result of this
outline-edge-detector post processing. This time you can easily see the tire outlines and even
the outlines of the handlebar and seat—a definite improvement over the previous outline
edge test.

Figure 9.40 Test image of bicycle after Canny edge detection.

Figure 9.41 Test image of bicycle after adjustment of Canny edge detection.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 259

The Canny edge detection was next. I had to experiment with the parameters to extract
the best edges. The result may be seen in Figure 9.44. This time you can observe the two tires,
the handlebar, and if you squint a bit, the seat. There are more non-target object edges in this
image, which I believe is due to a greater number of pixels that the algorithm attributed to
pseudo-edges.

Figure 9.42 High-resolution test image.

Figure 9.43 Outline edge detection of the high-resolution test image.

 260 B u i l d Y o u r O w n Q u a d c o p t e r

Based upon the results of the above tests, I believe that the ideal camera for use in
surveillance and targeted-object detection would be a GoPro format type of camera with a
longer optical focal length. I am not aware of the availability of any such camera to consumers,
but it would be a good choice for this type of surveillance. I am sure that the tradeoff between
lens size and camera-body size is a big consideration for designers and marketing people for
this video camera type.

Geotagging GoPro Hero 3 Photos
Geotagging refers to inserting GPS coordinates into a photograph’s metadata. Metadata in
turn refers to the hidden data included in a digital image file that provides a great deal of
supplemental information concerning the photographic image. Exchangeable image file format
(Exif) is the name for this image metadata and is a photographic industry standard that has
been in existence since the mid 1990s. Most modern digital cameras automatically generate
Exif data, which is appended to the actual image data. Exif data is usually viewed through
applications designed to reveal the data, although it is easily viewable in the Windows
operating system by following these three simple steps:

1. Right click on the image name in the directory where it is stored.
2. Click on Properties, which is normally the bottom selection in the Dialog box.
3. Click on the Details tab.

You should be able to scroll through the Dialog box and view all the metadata that has been
stored with regard to the selected image. You may even have geotagged photos on your
computer if they were taken with a smartphone with location service enabled.

Figure 9.44 High-resolution test image adjusted by Canny edge detection.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 261

Caution: Photos that were taken with a smartphone and posted on the Web can inadvertently
provide GPS coordinates to anyone with an interest. You should probably avoid this if you and
your family are leaving on a road trip or vacation and take a parting photo at your home.

Geotagging is appropriate only for photographs, not video, since it is impossible to tag
every frame when they are being created 30 times per second. The Hero 3 camera has a
useful feature that takes a still photograph image every 5, 10, 30, or 60 seconds, while also
creating a video. These intermittent photos will be the ones geotagged to record your location
on the photo. Notice, that I chose the word “your” to describe the location because the GPS
coordinates will be generated by the Android tablet that is part of the ground control station
(GCS) and not by anything onboard the quadcopter. In most cases, this should not be a
problem, since you will be within 100 m (109.36 yd) of the flying quadcopter. The GCS GPS
coordinates should be sufficiently accurate for most location and identification purposes.

Geotagging photos require that a record of GPS coordinates be saved during the same
time interval that the photographs are taken. This saved record is known as a GPS track,
which is just a collection of GPS coordinates along with the time that the coordinates were
taken. It then becomes a simple task of matching the time the photograph was taken to the
matching time from the GPS track. Most digital photos have the time they were taken
recorded and stored in the Exif data. I used a program named OpenGPS Tracker to create the
GPS track that runs on a Motorola Android Zoom tablet. This tablet is part of the GCS shown
in Figure 9.19 on page 244.

Geotag Test Run
I decided to run a simple experiment in which I made a three-mile trip near my home with
the Hero 3 camera mounted in my car. Figure 9.45 shows the Hero 3 mounted on the front
windshield with a suction-cup mounting adapter.

If you examine the figure closely, you will see that the camera is mounted in an inverted
position. A camera setting in the Setup menu will invert the image to compensate for this
common mounting configuration. Note that the Hero 3 is also mounted in an inverted
position on the tiltable platform.

Figure 9.45 Hero 3 mounted on a car windshield.

 262 B u i l d Y o u r O w n Q u a d c o p t e r

At the start of the trip, I clicked on the Start tracking button in the Android tablet’s
OpenGPS Tracker application. Then I periodically took pictures throughout the trip and
finally clicked on Stop Tracking at the trip’s end. The tracker application created a track log,
a file named Track201310231000.gpx, that will be one of the inputs to the geotagging program.
Figure 9.46 shows the track as it appeared on the tablet’s screen.

The gpx extension appended to the track file is short for GPS Exchange Format. This
format is in the extensible meta language (XML), which allows for standardized data
interchange between applications and Web services. The gpx file can hold coordinates, also
known as waypoints, along with routes and tracks. The following is a snippet of the track log:

<?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’ ?>
<gpx version=”1.1” creator=”nl.sogeti.android.gpstracker”
xsi:schemaLocation=”http://www.topografix.com/GPX/1/1
http://www.topografix.com/gpx/1/1/gpx.xsd”
xmlns=”http://www.topografix.com/GPX/1/1”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:gpx10=”http://www.topografix.com/GPX/1/0”
xmlns:ogt10=”http://gpstracker.android.sogeti.nl/GPX/1/0”>
<metadata>
<time>2013-10-26T14:00:25Z</time>
</metadata>
<trk>
<name>Track 2013-10-26 10:00</name>

Figure 9.46 The test-run track on the Android screen.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 263

<trkseg>
<trkpt lat=”43.23794960975521” lon=”-71.04583740234169”>
<ele>61.0</ele>
<time>2013-10-26T14:00:26Z</time>
<extensions>
<ogt10:accuracy>9.487171173095703</ogt10:accuracy></extensions>
</trkpt>
<trkpt lat=”43.237617015837365” lon=”-71.04948520660194”>
<ele>35.0</ele>
<time>2013-10-26T14:02:16Z</time>
<extensions>
<ogt10:accuracy>45.59917449951172</ogt10:accuracy></extensions>
</trkpt>
<trkpt lat=”43.23302507400387” lon=”-71.05446338653358”>
<ele>-23.0</ele>

XML employs user-generated tags to delimit the data. An example from the above data
snippet is:

<time>2013-10-26T14:00:26Z</time>

where <time> is the beginning tag and </time> is the ending tag. Everything between the
tags is data that can be extracted by an XML parser application. XML is a versatile data
interchange format that is rapidly becoming the mainstream way to tranfer data in most
software applications and Web services.

The second input file needed for geotagging is the one containing all the images. I
created this second file by removing the microSD card from the Hero 3 camera and mounting
it on my Windows laptop. You will probably need an adapter to hold the microSD card so
that it can be inserted into a standard laptop SD card port. Figure 9.47 shows a typical
adapter that is often provided when you purchase a microSD card.

Figure 9.47 A microSD card adapter.

 264 B u i l d Y o u r O w n Q u a d c o p t e r

I then copied all the images created during the trip from the card into a directory that I
named GoPro test. One of the images in this directory is shown in Figure 9.48. The figure
shows some of the Exif data for this image. I retrieved the data by using the three steps
described above. I am showing you this data so that you can see what it contains before it is
geotagged.

The free Windows program I used to geotag the photos is named GPicSync. It
can be downloaded from https://code.google.com/p/gpicsync/. Figure 9.50 shows the
application’s main screen.

You have to enter the following information before geotagging. Your specific directory,
file, and time zone information will differ from mine.

•	 Pictures folder — C:\Users\Don\Pictures\GoPro Test\GoPro Test
•	 GPS file— C:\Users\Don\Downloads\Track201310261000.gpx
•	 Google Earth — > Icons—picture thumb Elevation—Clamp to ground
•	 Check— Create a log file in pictures directory
•	 Check—Add geonames and geotagged—Geonames in IPTC + HTML Summary in

IPTC caption
•	 Select time zone—US/Eastern
•	 Geocode picture only if time difference to nearest track point is below (seconds)—300

Click on the Synchronize! button to start the geotagging process. It might take a while to
complete the process, especially if there are a lot of photos to be tagged.

Figure 9.48 Sample trip image.

https://code.google.com/p/gpicsync/

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 265

Figure 9.49 Exif data for the image in Figure 9.48.

Figure 9.50 GPicSync main window.

 266 B u i l d Y o u r O w n Q u a d c o p t e r

In Figure 9.51, you can see the Exif data for the earlier sample photo now showing that
GPS data has been added to the metadata.

Duplicate photos will be added to the photo directory. The first one will be the non-
geotagged photo, and the one following it will have the geotag data added. You will now
have two versions of each photo, just in case you still want to use an untagged photo.

There should also be another file created in the picture directory named doc.kml. This
file is in the XML format, which is a recognizable data source for the Google Earth application.
Double click on this file and choose Google Earth as the default application to open this file
with the .kml extension. Figure 9.52 shows the result that will occur when Google Earth
opens with this file.

As you can see, the track is shown along with thumbnails of the photos that were taken
when I was driving the track. I clicked on the sample picture to show where it was taken in
the track. I zoomed in on the Google Earth display so that the photo could be more easily
seen; however, the zoom limited the track view a bit.

A snippet of the doc.kml file that deals with the sample photo is shown on the opposite
page. It is easy to see how the sample photo is identified. In this case, it is GOPRO100.JPG,
which is between the XML name tags. The GPS coordinates are also included in the snippet
and are shown between the XML coordinates tags.

Figure 9.51 Geotag data added to Exif data for image in Figure 9.48.

 C h a p t e r 9 : A i r b o r n e V i d e o S y s t e m s 267

<Placemark>
<name>GOPR0100.JPG</name>
<description><![CDATA[<img src=’gopr0100.jpg’ width=’600’
height=’450’/>]]>
</description>
<styleUrl>#defaultStyle1</styleUrl>
<Style>
<IconStyle>
<Icon><href>thumbs/thumb_GOPR0100.JPG</href></Icon>
</IconStyle>
</Style>
<Point>
<coordinates>-71.04583740234169,43.23794960975521,61.0
</coordinates>
</Point>
</Placemark>

An easier way to view the track and photos than the above procedure is to simply click
on the View button in Google Earth, which is located on the GPicSync screen. I initially
discussed the doc.kml file because I wanted to show you what was really happening when
you clicked this button.

This section concludes my discussion on the video systems that I have found effective
for quadcopter operations. The next chapter focuses on performance checks, along with
some important training topics.

Figure 9.52 Google Earth opened with the doc.kml file.

 268 B u i l d Y o u r O w n Q u a d c o p t e r

Summary
The chapter began with an introduction to the GoPro Hero 3 camera system. This was one of
two video systems discussed in the chapter. The Hero 3 is a very wide angle, high-definition
video system that is well suited for implementing a first-person viewer (FPV) system that
helps the operator to control the quadcopter.

I discussed the Hero 3's basic functions along with its limitations so that you have a clear
understanding of its capabilities. A WiFi range check was also conducted to confirm that the
Hero 3 should operate quite well with the quadcopter.

I next discussed a simple ground control station (GCS), which allows the operator to have
all the communication devices readily available for flying the aircraft in a safe and effective
manner.

Next, we looked at an economy video system that provides a reasonable surveillance
capability when used in conjunction with post-processing software. I demonstrated the
RoboRealm software application, which processed video captures from the economy video
system. I showed you how to perform histogram, negative, and edge-detection algorithms
with the economy video system. I also provided a detailed explanation of Canny edge
detection and its algorithm to illustrate how you could go into great depth with one of the
many RoboRealm algorithms.

I showed you the results of two field tests, one using the economy video system and the
other conducted with a DSLR.

The chapter concluded with a discussion of how to geotag a series of Hero 3 photographs.
I also showed you how to create the GPS track file that is required before you can geotag the
photos.

chapter 10
Training Tutorial and

Performance Checks

Introduction
In the first part of this chapter, I will discuss how you should train to safely operate a
quadcopter. I will also recommend various resources that are available to enhance this
training. The last part of the chapter concerns quadcopter performance measurements.
I discuss the various factors that can either increase or diminish a quadcopter’s operating
performance.

Developing Fundamental Quadcopter Piloting Skills
First, I am not suggesting that the only way to fly a quadcopter successfully is to use a
training program to develop some pilot skills. However, you have probably invested
considerable time, effort, and money in building your quadcopter and probably should
want to protect your investment. Developing good operating skills takes a modest investment
in both time and money but is considerably better than the alternative trial and error system,
especially where error might cost you your whole quadcopter investment or worse, such as
injury to others and/or property damage. With this disclaimer expressed, I will proceed to
discuss the actual training that I accomplished.

Training to operate the quadcopter is best accomplished by practicing with a software
simulator program. There are a variety of quadcopter simulator programs that I have found
and that are listed in Table 10.1. This list is not guaranteed to be totally comprehensive or
accurate as of the time you read it. The R/C software industry is as dynamic as most software
development companies, and new programs appear and old ones disappear quite frequently.

In my discussion from this point on, I will be using the AeroSIM RC flight simulator,
which I will now simply refer to as the “SIM.” The SIM is available online from www
.aerosimrc.com and is moderately priced. It comes with a training cable that is discussed
below. It supports the following connector outline styles that are shown in Figure 10.1 and
detailed in Table 10.2. The SIM has many features including but not limited to:

•	 Realistic scenarios
•	 Game mode
•	 Sixty-three lessons, including takeoff, flight controls, and landing

269

http://www.aerosimrc.com
http://www.aerosimrc.com

 270 B u i l d Y o u r O w n Q u a d c o p t e r

•	 Reset to takeoff position after a crash
•	 Realistic sun glare (not too applicable to quadcopter operation)
•	 Realistic graphics
•	 GPS included in first-person video (FPV)
•	 Ability to create your own scenarios using satellite imagery
•	 Model editor
•	 Instrument panel (not too applicable to quadcopter operation)
•	 Comprehensive menu bar at the bottom of the main screen
•	 Wind adjustments

Name Remarks

Real Flight RF7 Comprehensive with two quadcopter models included; moderate
cost.

Real Flight Basic A less expensive version of the above simulator; however, it does
not come with a quadcopter model. A free user-created model is
available from Knife Edge Software.

RC Phoenix Pro V4 Seems to be highly regarded, judging from user reviews.

Flying Model Simulator
(FMS)

This program was developed by Draganfly Innovations. No
quadcopter models are included, but several free ones are
available from the Draganfly Forum.

AeroSIM RC The one that I use and will discuss in this chapter.

Table 10.1 R/C Quadcopter Simulators

Figure 10.1 SIM connector outlines.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 271

•	 Power, maneuverability, and responsiveness settings
•	 Record and replay flights
•	 Transmitter-to-USB cable included

The SIM is extremely comprehensive and includes all the features that are needed to
make you a competent quadcopter operator. It is moderately priced and, I believe, well
worth the cost. Figure 10.2 shows you what comes with the SIM.

One of the most important aspects of the SIM is that you control the quadcopter with
your actual R/C transmitter and not with the mouse and keyboard. This mode of operation
brings an important dose of realism to the training that is directly transferable to actual

Name Manufacturer

Futaba Futaba

DIN-6 Futaba/Hitec

Multiplex No specific maker—DIN-5, DIN-7, DIN-8 compatible

Mono jack JR/Spektrum/Hitec Aurora/Turnigy/Graupner mx series with
DSC socket

Stereo jack Graupner mc series with Trainer module

Mini-DIN-4 WFly/E-Sky/Storm/Sanwa

DIN-5 Sanwa/Airtronics

Table 10.2 Supported SIM Connectors

Figure 10.2 SIM package contents.

 272 B u i l d Y o u r O w n Q u a d c o p t e r

quadcopter operations. I think it is worth further looking into to discover how the actual
R/C transmitter signals are incorporated into the SIM. Figure 10.3 shows the 3.5-mm trainer
jack that is located on the back of the Spektrum DX-8 R/C transmitter.

Note: Some R/C transmitters label this jack as the buddy box because it provides the necessary
signals that allow another transmitter to work alongside the primary, or main, transmitter. I
discuss buddy-box training later in this chapter.

All eight pulse-position modulation (PPM) signals are available when a 3.5-mm plug is
inserted into the trainer jack. These PPM signals represent the eight transmitter channels and
are generated every 22 ms, as can be seen in Figure 10.4.

The timing for these signals was thoroughly discussed in Chapter 6, and I would urge
you to go back and review that discussion to fully comprehend what these pulses represent.
There is one significant difference between the pulse trains shown in Chapter 6 and those
that are emitted from the trainer jack. In the ones under discussion here, the actual pulses
themselves are fixed in width at 0.4 ms each. It is the time between the pulses that represents
the actual channel-pulse width. It really is just how you interpret the trace.

You should note that the DX8 transmitter should be off when the 3.5-mm plug is inserted.
There is a switched contact built into the jack that will automatically turn the DX8 on and
place it into the Slave mode when a plug is inserted. Also, note that the transmitter is disabled
while it is operating in the Slave mode.

I also expanded the time scale on the USB oscilloscope because I wanted to confirm that
the throttle channel was properly functioning. Figure 10.5 shows the expanded trace with all
eight channel pulses shown and with the throttle at the 0 percent setting.

The throttle pulse-width spacing is 1.1 ms, which is the expected value. I next increased
the throttle to approximately 80 percent in order to check the new pulse width. All other
channels remained unchanged. Figure 10.6 shows the result.

The new throttle pulse-width spacing is approximately 1.7 ms, which matches the
80 percent setting. Consequently, I assumed that all the other channels were functioning
properly.

Figure 10.3 Spektrum DX-8 Trainer jack.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 273

Figure 10.4 USB oscilloscope trace from the trainer jack output.

Figure 10.5 Expanded USB oscilloscope trace with throttle at 0 percent.

 274 B u i l d Y o u r O w n Q u a d c o p t e r

The Trainer Cable
Figure 10.7 is a close-up photo of the SIM cable that connects between the DX8 trainer jack
and the computer’s USB port.

The slightly translucent, red USB plastic case apparently contains some interesting
electronics that are programmed to accept analog PPM signals and to output serial digital
data that represents the data value for each PPM channel. Based upon my research, I am
guessing that some type of low-cost, low-power Atmel microprocessor is being used in the

Figure 10.6 Expanded USB oscilloscope trace with throttle at 80 percent.

Figure 10.7 SIM trainer cable.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 275

adapter case that determines the timing between the fixed pulses and outputs a packet of
eight numbers representing that time. This is repeated every 22 ms to match the PPM stream
from the transmitter. These data packets are subsequently received and processed by the
SIM to provide the user with control inputs to the application.

It would be relatively easy to program a computer to supply similar data packets, and
thus, give you a way to experiment with various control inputs without needing an R/C
transmitter. In fact, there are a number of folks who have done exactly what I just mentioned
so they could experiment with SIMs and other devices that accept PPM inputs.

The SIM installation CD contains the required device driver that must be installed before
you can use the trainer cable. Note that the SIM is only Windows-compatible as of the time
of this writing.

Running the SIm
It is not possible in this book to really show you how the SIM functions, but presenting some
screenshots of it working will help you understand. I will show a few figures that are
representative of what you would see when running the SIM. Figure 10.8 is the opening
screen that you see when the SIM starts. I had already selected the quadcopter IV model,
which is shown in the figure. You must configure the SIM to match the transmitter’s controls.
The easiest way to accomplish this important step is to follow the procedure below:

1. Click on the Controller selection located in the top menu bar
2. Click on the Configuration selection
3. Click on the Controls button
4. Click on either Config A or Config B (I selected Config B)
5. Click on the Config and Calibrate TX (Beta) button
6. Follow the step-by-step instructions

Figure 10.8 The SIM opening screenshot.

 276 B u i l d Y o u r O w n Q u a d c o p t e r

The SIM should now be all set up to operate after completing the above steps. The model
is flown in the SIM, using the DX8 controls in exactly the same way they would be operated
if you were using the actual quadcopter. There is also a simulated FPV view that mimics, to
some extent, the real GoPro FPV. Figure 10.9 shows a quadcopter FPV with GPS, system
status, wind, and course data superimposed on the SIM screen. This display is great for SIM
operation but unfortunately is not present for real operations.

Figure 10.10 shows a typical lesson in which you have to keep the quadcopter hovering
within the circle. In this lesson, you will learn that very small control movements are all that
you need to maneuver the quadcopter. You will quickly lose control if you make large or

Figure 10.9 SIM screenshot with quadcopter flying.

Figure 10.10 Sample SIM lesson screenshot.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 277

even moderate control-stick motions. It is important to realize that finesse and a slight
control motion is all that is needed.

The SIM keeps track of your progress throughout all the lessons and is a handy way to
rate your own progress. I do not believe you have to complete all the lessons to simply
become reasonably proficient in operating the simulated quadcopter. I would recommend
that you complete the fundamental lessons, such as maintaining altitude and hovering
within a designated location, even though you may already have some R/C experience.
Controlling the quadcopter SIM is significantly different from a conventional airplane.

The Buddy Box
The phrase buddy box refers to the situation in which two R/C transmitters are wired together
to control a single aircraft. Figure 10.11 shows a buddy-box cable that is used to connect two
Spektrum R/C transmitters.

The plug ends of the cable are inserted into each transmitter’s trainer jack to complete
the buddy box. One transmitter must be configured as a Master and the other as a Slave. The
Master unit is the only one that transmits to the aircraft, while the Slave unit passes its
control inputs to the Master, which then transmits them. The Slave operator can control an
aircraft while being observed by the Master operator. The Master operator can immediately
take control of the aircraft if the Slave operator inadvertently places the aircraft in a bad or
dangerous flight condition.

The configuration instructions appropriate for each transmitter need to be followed
in order to get the buddy box working. It is not required that each transmitter be the
same model or even from the same manufacturer. It will probably require some trial-and-
error experiments to get different manufacturers transmitters working in a buddy-box
arrangement.

The following instructions show you how to set up a buddy box between two DX8
transmitters:

1. Ensure that both transmitters are using the same aircraft profile. You can accomplish
this by using an SD card to copy the setup from one DX8 and then loading that setup
into the other DX8. Be sure that the same model is selected in both transmitters.

2. Press and hold the roller while powering up the DX8 that you designate as the
Master. Rotate the roller and select the Trainer mode. Then select Pilot Master from
the available options. Finally, exit and power off.

Figure 10.11 Buddy-box cable.

 278 B u i l d Y o u r O w n Q u a d c o p t e r

3. Press and hold the roller on the Slave or Student DX8 while powering up the unit.
Rotate the roller and select the Trainer mode. Then select Slave from the available
options. Finally, exit and power off.

4. Now, turn on the Master DX8 and plug in the trainer cable. Do not turn on the Slave
DX8. Simply plug the trainer cable into the Slave DX8, which will power it on. The
term SLAVE should appear in the Slave LCD screen.

5. Remove all the propellers from the quadcopter before proceeding with this step.
Next, test that the Master allows the Slave to power the quadcopter and that the
motors appear to change speed as the controls are moved.

6. Ensure that no motor-speed changes occur when control is shifted between the
Master and Slave and vice-versa.

Wireless SimStick Pro
This section discusses an enhancement to the basic SIM setup. I used a device named
SimStick Pro that enables a totally wireless interface between the R/C transmitter and the
laptop running the SIM. This SIM enhancement also requires the use of an R/C receiver
along with the PPM-to-USB cable previously discussed. Figure 10.12 shows the setup with
the SimStick Pro, PPM-to-USB cable, and a Spektrum AR8000 satellite receiver.

All the components shown in the figure are powered from the laptop’s USB port. I
did find that I had to rebind the satellite receiver to the transmitter in order to establish
a communications link. Refer back to Chapter 6 to refresh your memory regarding the
binding process.

This setup not only breaks the cable link between the transmitter and the laptop, but it
also uses an actual radio link to further promote a realistic operating configuration. Using
this configuration has absolutely no effect on how the SIM functions. It just allows you to
walk around with the transmitter exactly as you would in the field. It would also be a distinct

Figure 10.12 Wireless SimStick Pro setup.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 279

advantage if the laptop video could be connected to a large-screen, flat-panel monitor or
television so that you would not have to be close to the laptop screen. That would comprise
an ideal training situation.

Performance measurements
Measuring quadcopter performance can mean different things, depending on your viewpoint
and needs. I think that measuring payload, or lifting capability, beyond the quadcopter’s
own weight would be an important item on everyone’s list. After all, such capability is a
fundamental property for any quadcopter performing a task such as video surveillance.
Another key property is flight time, or stated another way, determining how long a
quadcopter can stay aloft before the battery charge depletes and it must be landed. An
additional property that might be of interest to a select few users is the maximum altitude at
which the quadcopter can fly above ground. For most users, this is irrelevant because local
regulations likely restrict the maximum altitude to 400 ft (121.9 m) or less.

Determining maximum Payload
I decided to focus on payload as the property that would interest most quadcopter users.
Maximum payload, as I am defining it, is the total weight of a fully loaded quadcopter less
the weight of an unloaded one but with a battery attached. Determining maximum payload
capacity has probably been done in a trial-and-error fashion in which a payload is attached
to the quadcopter and a flight trial is attempted. The quadcopter would either fly or not, and
if it did fly, it might tip upside down if it happened to be at its maximum weight capacity.
That could lead to serious quadcopter damage that might even include damaging an
expensive video camera if it happened to be the payload. I first tried tethering or tying down
a quadcopter using tough string, but that never worked, as the quadcopter flight-control
system would “fight” the tether and would always twist to one side or another. I figured
there must be a safer and more scientific way to determine payload. Figure 10.13 is a sketch
of my first design for determining payload.

Figure 10.13 Preliminary design sketch for maximum payload determination.

 280 B u i l d Y o u r O w n Q u a d c o p t e r

The basic concept was to mount the quadcopter on a platform that is counterbalanced to
match the combined weight of the platform and an unloaded Elev-8. In that way, I could add
additional weight to the platform until the Elev-8 could no longer lift the weight. That
weight must then equal the maximum payload.

Figure 10.14 is a photo of the completed test frame. Several revisions were made to the
original design before I arrived at the one shown in the photo. I have included the plans for
this test frame on this book’s website, www.mhprofessional.com/quadcopter, for those
readers interested in building the device. I deliberately used common materials that are
typically found in home improvement stores to make it easy to build it.

The top of the test frame is shown in Figure 10.15. You can see the common wash-line
pulleys I used to redirect the nylon line that holds the platform to the hanging counterweights.

The platform, which is supported by a cross brace made of 0.5-in PVC tubing, is shown
in Figure 10.16. In this figure, you can see that the empty platform is being held tight to the
travel-stop collars by the hanging counterweights. These stop collars are required to prevent
the Elev-8 propellers from striking the top-frame cross member as the quadcopter rises to
the top. You should also notice the PVC tees that hold the ends of the platform cross brace
to the vertical frame tubes. These tees were significantly altered to allow free vertical travel,
while still providing minimal horizontal motion. Figure 10.17 is a close-up of one of these
PVC tees.

Figure 10.14 Final test-frame design.

http://www.mhprofessional.com/quadcopter

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 281

Figure 10.15 Top view of the test frame.

Figure 10.16 Close-up of the test frame platform.

Figure 10.17 Platform cross-brace attachment tee.

 282 B u i l d Y o u r O w n Q u a d c o p t e r

Each tee was bored out using a 13∕8-in Forstner bit to allow enough clearance for it to slip
over the 1½-in OD vertical PVC tube. A 90° arc was also cut out of the main barrel to prevent
binding, yet allow the tee to be pushed onto the vertical tube.

The hanging counterweights are pictured in Figure 10.18. These counterweights are
made up of 2½-in OD PVC tubes with a hard cap on one end and a rubber cap on the other
end. Simple friction holds the hard cap in place, while a 3-in hose clamp secures the rubber
cap. This arrangement allows water to be put into each counterweight until the appropriate
weight is reached. The following calculations show how the water weight was determined
for the counterweights.

Total weight of platform and Elev-8:

1.140 kg (Platform wt.) + 1.664 kg (Elev-8 wt.) = 2.804 kg

Counterweight calculations:

Average weight of one empty counterweight = 0.560 kg

Total weight of four empty counterweights:

0.560 kg × 4 = 2.240 kg

Total weight of water needed to counterbalance weight of the platform and the Elev-8:

2.804 kg (wt. of platform & Elev-8) - 2.240 (wt. of empty counterwts.) = 0.564 kg

Weight of water to be added to each counterweight:

0.564 kg ÷ 4 = 0.141 kg

Weight of each counterweight with water added:

0.560 kg + 0.141 kg = 0.701 kg

Figure 10.18 The hanging counterweights.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 283

Figure 10.19 shows the Elev-8 mounted on the frame platform for payload testing.
Notice that the Elev-8 is positioned so that the propellers are centered between the vertical
tube supports. This positioning ensures that the propellers have ample clearance from any
frame member.

I attached the Elev-8 to the platform using tie wraps, as shown in Figure 10.20. In order
to use the tie wraps you will need to drill two holes on either side of the landing-gear
touchdown points, as you can see in the figure.

Test Results
I ran a series of experiments by adding a little bit of weight each time until the quadcopter
began to vibrate excessively, thus indicating that it had reached its lifting capability. The
result was approximately 0.9 kg (1.98 lb). I estimated that this value should vary by ± 50 g,

Figure 10.19 The Elev-8 mounted on the test frame.

Figure 10.20 Elev-8 tie-wrap attachment to the platform.

 284 B u i l d Y o u r O w n Q u a d c o p t e r

depending upon the distribution of the load. This means that the Elev-8, as configured,
should have a conservatively rated 0.9-kg (1.98 lb) payload, which should meet most users’
needs.

I also noted that the Hoverfly flight-controller LED would start flashing red when the
quadcopter started to shake violently, which happens at the maximum capacity. I observed
that one of the motors began to overheat to the point where I could smell burning insulation.
Fortunately, the motor recovered when allowed to cool; however, I now suspect that the
motor will not perform at optimal capacity because of the overheating event. (Refer to my
motor discussion in Chapter 5 to see the reasons for my pessimism.) This kind of behavior
should not be present in unconstrained free flight, since the flight controller is functioning as
designed and will not direct massive power to a single motor in order to correct perceived
force imbalances. I believe that the quadcopter should function normally when it is in free
flight because the flight controller will receive appropriate responses to its control commands
to the motors.

Kill Switch
At the end of Chapter 3, I mentioned the desirability of adding a kill switch to the Elev-8.
This feature would simply cut off all primary power to the quadcopter and cause it to drop
out of the sky before it could crash into people or property. Figure 10.21 shows a simple kill-
switch configuration. It is just a toggle switch that can be turned off by actuating a servo
outfitted with a simple wooden arm that trips the switch.

Note: Use an appropriately rated toggle switch that can handle the peak current that flows from the
primary battery during typical quadcopter operations.

I connected the servo directly to the uncommitted Aux-2 channel on the AR-8000 R/C
receiver. Flipping the Aux-2 switch from the + (positive) position to the – (negative) position

Figure 10.21 Elev-8 kill switch.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 285

causes the servo arm to rotate 90°, which is sufficient to turn the kill switch on. The quadcopter
will instantly lose all power and immediately drop when the kill switch is activated. Of
course, be very sure that no one or no thing is under the quadcopter as it drops. The whole
point is to prevent injury or property damage, not to cause it by carelessly dropping the
quadcopter.

Estimating Flight Time
Flight time is related directly to the LiPo battery's state of charge (SOC). The only parameter
that is measured while in flight is the battery voltage, which is reported back to the DX8
transmitter via the telemetry module. The main problem is how to relate battery voltage to
SOC. A solution to this problem is not too simple because the battery voltage and SOC are
not directly proportional. In other words, this means a 20-percent reduction in battery
voltage does not mean that the SOC is 20-percent depleted because the relationship between
voltage and SOC is a complex, or nonlinear, one.

R/C enthusiasts have done studies relating battery voltage to SOC, which I summarize
in Table 10.3. I show both single-cell (1S) and three-cell (3S) voltages in this table.

On average there is a 10 percent SOC depletion for every 5-mV LiPo-cell voltage drop.
I would caution you that these values may not represent the exact behavior of your LiPo
battery, as there are significant variations in the way LiPo batteries are manufactured for the
R/C field. However, the data should be reasonably close and more than suitable to address
the concerns of most quadcopter operators.

There is a general rule of thumb that applies to LiPo batteries that you must know. It is
the so-called 80-percent rule:

CautioN: Do not drain the battery below 80% of its rated charge.

An 80-percent depletion, according to the data in Table 10.3, reflects a 3S voltage of
11.4 V. This means you should immediately land the quadcopter if the telemetry shows you
are approaching 11.4 V. Although there are complex reasons why LiPo batteries should not

Single Cell LiPo Voltage 3-Cell LiPo Voltage Percentage SOC

4.20 12.60 100

4.15 12.45 90

4.10 12.30 80

4.05 12.15 70

4.00 12.00 60

3.95 11.85 50

3.90 11.70 40

3.85 11.55 30

3.80 11.40 20

3.75 11.25 10

3.70 11.10 0

Table 10.3 LiPo Voltage versus SOC

 286 B u i l d Y o u r O w n Q u a d c o p t e r

be discharged below 80 percent of rated capacity, I will simply state that following the
80 percent rule will allow you to achieve the maximum battery life possible. Most consumer
LiPo’s can be recharged 350 to 400 times before losing their recharge capability. Discharging
past 80 percent of capacity will significantly reduce the number of recharge cycles. This can
be an expensive situation, since high-capacity LiPo batteries are not cheap.

I would like to relate battery voltage to flight time now that I have thoroughly discussed
LiPo SOC. The key parameter is current flow, or discharge rate. The motors probably account
for 90 to 95 percent of the current flow. The amount of current the motors draw is directly
related to the payload and flight dynamics. The current flow can be minimal if the quadcopter
is idling on the ground with the propellers either not moving or just barely rotating. The
flow is significantly higher while it is hovering and likely peaking if you are racing across
the countryside or seeking a new high-altitude record.

I will use an average current flow of 16 A for each of the A2212/13T motors to reflect the
operational modes that a quadcopter operator will likely use in a typical flight. I will also use
a 40C, 3S battery as the power source, which again might be a very typical choice. The total
average current draw for all four motors would be 64 A, which is quite a large energy drain.
However, modern LiPo batteries are quite capable of meeting this demand, which is the
primary reason why quadcopters can operate.

The flight time calculation is:

 40C/64 A × 60 min = 37.5 min (100% depletion)
 37.5 min × 0.80 depletion = 30 min (80% depletion per the 80% rule)

Thirty minutes would be the absolute maximum that you could expect; however, in
practical terms, I believe you should expect realistic flight times in the range of 22 to 28
minutes. Of course, if you use a lower capacity battery, your flight times will be proportionally
less. You should expect no more than 15 minutes of flight time if you use a 20C battery.

My practical advice to quadcopter operators is to have several fully charged LiPo
batteries available, in addition to the one mounted on the quadcopter. In that way, you can
quickly swap batteries and not have to waste time waiting for the depleted battery to
recharge, which can be a considerable interval, especially if it is down to its minimum SOC.

This completes the discussion on training and quadcopter performance, I will now move
on to another interesting topic: where the quadcopter field is heading (no pun intended).
Chapter 11 will also include suggested ways to improve or experiment with your quadcopter.

Summary
I started this chapter with a discussion of how to acquire the skills needed to successfully
operate a quadcopter. Operating an R/C simulator program seems to be the most prudent
way to develop the required skills, while minimizing any potential damage to the real
quadcopter. Several available simulator programs were listed, with particular focus on the
AeroSIM RC (SIM) program, as that was the one I had purchased to train myself.

The discussion that followed looked at the various connector styles that are commonly
used to hook up the R/C transmitter to the computer running the SIM. A 3.5-mm mono plug
is used with the Spektrum DX8 transmitter that I chose for this project.

I showed you a series of USB oscilloscope traces that demonstrated the pulse-position
modulation (PPM) signals that are available at the trainer jack located on the back of the DX8.
I also discussed the PPM-to-USB converter module that changes the PPM signals to the
equivalent serial digital numbers that are input into the computer’s USB port. These numbers
are used by the SIM to represent the user’s control motions as sensed by the R/C transmitter.

 C h a p t e r 1 0 : T r a i n i n g T u t o r i a l a n d P e r f o r m a n c e C h e c k s 287

Several screenshots were shown to illustrate typical SIM displays that you will see when
you are running the actual SIM.

I briefly discussed the buddy-box training scenario in which two operators could control
a real quadcopter. One operator would be designated as the Master and the other operator
as the Slave. Presumably, the Slave operator would be the one learning to operate the
quadcopter, while the Master operator could override and take control if something was
going awry.

The wireless SimStick Pro accessory was discussed next. It allows the SIM to be operated
in a very realistic manner whereby the transmitter sends the control signals to the R/C
receiver by means of an actual radio link. From that point, it goes through the PPM-to-USB
module/cable and into the SIM computer. This arrangement is about as close to flying a real
quadcopter as you can practically achieve.

The chapter closed with sections that dealt with two quadcopter performance measures:
payload and flight time. I showed you a unique test frame that I designed and built to
accurately measure the actual payload a quadcopter could lift. Payload is normally defined
as the amount of weight that can be lifted while not counting the actual quadcopter weight
including the battery. In the case of the basic Elev-8, I determined the payload was 0.9 kg
(1.98 lb). This is sufficient to lift most loads that a medium-sized quadcopter such as the
Elev-8 could expect to lift, given that a fairly hefty LiPo battery was powering the aircraft.

The last section dealt with determining flight time. I went through a detailed discussion
regarding LiPo state of charge (SOC) and battery voltage showing that it is possible to
reasonably estimate the SOC simply by viewing the real-time battery voltage. That
measurement is available if you have incorporated the TM1000 telemetry module in the
onboard electronics. I also went over the 80 percent rule, which is critical to follow to ensure
that the LiPo battery life can be extended by its maximum number of possible recharges.

This page intentionally left blank

chapter 11
Enhancements and

Future Projects

Introduction
In this chapter, I will discuss both enhancements and future projects that you may want to
consider for your quadcopter. Several of the concepts that were introduced in earlier chapters
will now be integrated into these discussions. You might want to go back and refresh your
knowledge regarding these concepts as you read about them. I have endeavored to point out
the appropriate chapters in which they were first discussed. You will also find some new
material about advanced sensors that will add significant flexibility and capability to your
quadcopter flight operations.

Position Location and Return to Home Operation
Determining the quadcopter’s geographic position is relatively easy using the GPS system.
In Chapter 10, I described and demonstrated a simple, real-time GPS system that continuously
sent the GPS coordinates back to the ground-control station (GCS). These coordinates were
then displayed on an LCD screen in a latitude and longitude format. In that discussion, I
showed how these coordinates could be manually entered into the Google Earth program to
provide a real image of where the quadcopter was positioned in the nearby terrain. GPS data
can also be used onboard the quadcopter to direct the aircraft to travel to a previous location
or to a new location. Unfortunately, I cannot show you how to implement a GPS positioning
system onboard the Elev-8, since the flight-control software in the Hoverfly Open flight-
control board is proprietary (as I mentioned in Chapter 3). I can, however, outline a proposed
approach on how to implement a virtual system that will position a generic quadcopter by
using GPS data.

This generic quadcopter will be a very simple one consisting of four motors driven by
four electronic speed controllers (ESCs) that are, in turn, controlled by the virtual flight-control
system (VFCS), which is implemented by the Parallax Board of Education (BOE). For this
project, I will assume that the VFCS will respond to R/C control signals from the GPS
module and also from an electronic compass. Figure 11.1 shows a block diagram of my
generic quadcopter control system that I just described.

In Chapter 10, I described the onboard GPS module. In the new configuration, the GPS
module's signals will be connected directly to a BOE instead of a Prop Mini. In addition,

289

 290 B u i l d Y o u r O w n Q u a d c o p t e r

there will be another sensor input from an electronic compass that I describe and demonstrate
in the following section.

Electronic Compass Module
I use the Parallax Compass Model HMC5883L with the Parallax part number 29133. This
module is described as a sensitive, three-axis electronic compass with sensors that are very
capable of detecting and analyzing the Earth’s magnetic lines of force. This module is shown
in Figure 11.2 and is quite small and compact.

Figure 11.1 Block diagram of a generic quadcopter control system.

Figure 11.2 Parallax Compass Module HMC5883L.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 291

The module uses the basic physics principle of magnetoresistance in which a semiconductor
material changes its electrical resistance in direct proportion to an external magnetic flux
field that is applied to it. (The effect was first discovered in 1851 by William Thomson, who
is more commonly known as Lord Kelvin.)

The HMC5883L utilizes the Honeywell Corporation’s Anisotropic Magnetoresistive (AMR)
technology that features precision in-axis sensitivity and linearity. These sensors are all solid
state in construction and exhibit very low cross-axis sensitivity. They are designed to measure
both the direction and the magnitude of Earth’s magnetic fields, from 310 milligauss to 8
gauss (G). Earth’s average field strength is approximately 0.6 G, well within the range of the
AMR sensors. Figure 11.3 is a close up of the three-axis sensor used in the compass module.

Three magnetoresistive strips are mounted inside the module at right angles to one
another in a way that enables them to sense the X-, Y- and Z-axes. It is probably easiest to
picture the X-axis aligned with the Earth’s north-south magnetic lines of force, which then
makes the Y-axis an east-west alignment. The Z-axis can now be thought of as the altitude,
or depression. Figure 11.4 shows these axes superimposed on the Earth’s lines of force.

Figure 11.3 Honeywell three-axis compass sensor.

Figure 11.4 Compass axes superimposed on the Earth’s magnetic lines of force.

 292 B u i l d Y o u r O w n Q u a d c o p t e r

The figure is a bit hard to decipher, as there is a lot being shown. The bold line labeled H
represents a magnetic line of force vector that can be decomposed into three smaller vectors
that are aligned with the X-, Y-, and Z-axes. I have shown only the Hx and Hy components,
for clarity’s sake.

The angle between the plane formed by Hx and Hy components and the H vector is
called the declination and is usually represented by the Φ symbol. Note that it is also important
to compensate for the tilt of the compass in order to achieve an accurate bearing.

Fortunately, all the compensation and calculations are nicely handled for us within the
HMC5883L module. Figure 11.5 shows a block diagram of what constitutes the main
electronic components within the module.

The module communicates with the host microprocessor using the I2C bus that was
discussed in Chapter 6. It takes a total of only four wires to connect the compass module to
the BOE. These connections are detailed in Table 11.1. The physical connections can be seen
in Figure 11.6.

We now need software to test the compass module with the BOE. I downloaded a very
nice demo program named HMC5883.spin from the Parallax OBEX website, which I have

Figure 11.5 The HMC5883L electronics block diagram.

HMC5883L Pins BOE Pins

VIN 5 V

GND GND

SCL P0

SDA P1

Table 11.1 Connections between the
HMC5883L Module and the BOE

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 293

discussed in previous chapters. This program contains all the test code necessary to
demonstrate the compass functions as well as the I2 C driver software that communicates
between the compass module and the BOE. In addition, the program uses the FullDuplexSerial
object, which provides a terminal display using the Propeller Serial Terminal (PSerT). This
program is also available from this book’s website, www.mhprofessional.com/quadcopter.

The first portion of the test program with comments is shown below.

{{HMC5883.spin 2011 Parallax, Inc. V1.0
Controls a Honeywell HMC5883 3-axis compass over an I2C bus.
Demo shows raw X, Y, Z and calculated Azimuth plus a heading in
Degrees.

 ┌────────────┐
 │ H SDA │ ─── I²C Data pin, I²C Master/Slave Data
 │ │ (Data I/O)
 │ M SCL │ ─── Serial Clock — I²C Master/Slave Clock
 │ │ (Clock 160 Hz)
 │ C DRDY │ ─── Data Ready, interrupt pin. Internally
 │ │ pulled high. (opt.)
 │ 5 VIN │ ─── 2.7 - 6.5 V DC (module is regulated to
 │ │ 2.5 V DC)
 │ 8 GND │ ─—— Ground
 │ 8 │
 │ 3 -Module |
 └────────────┘
}}

Figure 11.6 Physical connections between the HMC5883L module and the BOE.

http://www.mhprofessional.com/quadcopter

 294 B u i l d Y o u r O w n Q u a d c o p t e r

CON
 _clkmode = xtal1 + pll16x
 _clkfreq = 80_000_000
 datapin = 1 'SDA
 clockPin = 0 'SCL

 " All available registers on the HMC5883 are listed below:

 WRITE_DATA = $3C 'Used to perform a Write operation.
 READ_DATA = $3D 'Used to perform a Read operation.
 CNFG_A = $00 'R/W Register, Sets Data Output
 Rate. Default is 15Hz
 8 samples per measurement. 160Hz can be
 achieved by monitoring DRDY.
 CNFG_B = $01 'R/W Register, Sets the Device Gain(230-
 1370 Gauss). Default = 1090 Gauss.
 MODE = $02 'R/W Register, Selects the operating mode.
 'Default = Single measurement.
 'Send $3C $02 $00 on power up to change
 to continuous measurement mode.
 OUTPUT_X_MSB = $03 'Read Register, Output of X MSB 8-bit
 value.
 'Will read –4096 if math overflow during
 bias measurement.
 OUTPUT_X_LSB = $04 'Read Register, Output of X LSB 8-bit
 value. Will read –4096 if math overflow
 during bias measurement.
 OUTPUT_Z_MSB = $05 'Read Register, Output of Z MSB 8-bit
 value. Will read –4096 if math overflow
 during bias measurement.
 OUTPUT_Z_LSB = $06 'Read Register, Output of Z LSB 8-bit
 value. Will read –4096 if math overflow
 during bias measurement.
 OUTPUT_Y_MSB = $07 'Read Register, Output of Y MSB 8-bit
 value. Will read –4096 if math overflow
 during bias measurement.
 OUTPUT_Y_LSB = $08 'Read Register, Output of Y LSB 8-bit
 value. Will read –4096 if math overflow
 during bias measurement.
 STATUS = $09 'Read Register, indicates device status.
 ID_A = $0A 'Read Register, (ASCII value H)
 ID_B = $0B 'Read Register, (ASCII value 4)
 ID_C = $0C 'Read Register, (ASCII value 3)

VAR
long x

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 295

long y
long z

byte NE
byte SE
byte SW
byte NW

OBJ
 term : “FullDuplexSerial” 'PSerT driver
 math : “SL32_INTEngine_2” 'Math library needed for
 the atan function

PUB Main
 waitcnt(clkfreq/100_000 + cnt) 'Wait while compass has
 time to startup.
 term.start(31, 30, 0, 9600) 'start a terminal Object
 (rxPin, txPin, mode,
 baud)
 setcont 'sets continuous data
 acquistion
 repeat 'Repeat indefinitely
 setpointer(OUTPUT_X_MSB) 'Start with Register
 OUT_X_MSB
 GetRaw 'Gather raw data from
 compass
 term.tx(1) 'Set Terminal data at top
 of screen
 RawTerm 'Terminal window display
 X,Y,Z Raw Data
 HeadingTerm 'Terminal window display
 of heading in degrees.

PUB HeadingTerm
 "Terminal window display of heading in degrees.
 term.str(string(“Heading in Degrees:”,11))
 term.tx(13)
 term.tx(13)
 Heading

PUB AzimuthTerm
 "Terminal window display of calculated arcTan(y/x)
 term.str(string(“This is the calculated azimuth:”,11))
 term.tx(13)
 term.tx(13)
 term.str(@Azm)

 296 B u i l d Y o u r O w n Q u a d c o p t e r

 term.dec(azimuth)
 term.tx(13)
 term.tx(13)

Much of this program code simply controls how the data is displayed on the PSerT. The
actual program used in the VFCS will be much more condensed, since there is no need for a
human readable display to be implemented.

Figure 11.7 shows the demonstration circuit in operation. I have included a traditional
compass in the figure to illustrate magnetic north. The whole BOE has been oriented such
that the compass module is pointing to magnetic north. Figure 11.8 is a PSerT screenshot
confirming that the compass module is indeed pointing north.

It is time to examine the latitude and longitude calculations now that I have established
how to measure real-time magnetic bearings. These background discussions will set the
foundation for your understanding of how quadcopter operations tasks, such as return to
home base, can be accomplished.

Figure 11.7 Operational demonstration circuit.

Figure 11.8 PSerT screenshot displaying the north direction.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 297

Computing Path Length and Bearing Using Latitude
and Longitude Coordinates

I need to review some fundamental principles regarding latitude and longitude that you
might have missed if you snoozed during fifth-grade geography class. The horizontal lines
in Figure 11.9 are lines of latitude and the vertical lines are lines of longitude. Lines of
longitude are also known as meridians, and lines of latitude are sometimes referred to as
parallels.

If you were to cut the Earth along a line of longitude, it would result in a circle, from
which you would conclude that the planet is a spheroid, but it is not. However, for our
purposes, I will make the reasonable assumption that the Earth is a sphere, since the
computed distances in quadcopter operations are miniscule with regard to the radius of
Earth. Any errors introduced by this assumption are too small to be realistically determined.

All the cross-sectional circles cut on longitude lines have the same diameter, which
makes path determination easy for true north-south travel directions. Cutting along the
horizontal latitude lines, however, results in circles that diminish in size, which you should
be able to envision readily as you travel from the Equator (the maximum-diameter circle) to
either the true North or South Poles (minimum-diameter circles). This change in diameter
greatly complicates distance determination, but it is handled by a series of calculations
(shown later in this section).

All the latitude and longitude circles are further divided into degrees, minutes, and
seconds to establish the geographic coordinate system. The zero degree (0°) line of longitude
is defined by international standards to run through Greenwich, England. Vertical lines to
the left of the 0° line are designated as west while lines to the right are designated as east. The
lines continue to the opposite side of the Earth ending at 180° for both east and west lines of
longitude. The 0° line of longitude is also known as the Prime Meridian.

Figure 11.10 shows how the distance between lines of longitude narrows as it travels
north from the 0° line of latitude, which is also known as the Equator. The same holds true for
traveling south from the Equator. Table 11.2 shows precise measurements of longitudinal
arcs at selected latitudes.

The ±0.0001° measurement is of the most interest for quadcopter operations because it
will be the typical scale for flight operations. This means that the degree measurements of
latitude and longitude must be accurate to at least four right-hand-side decimal points.

Figure 11.9 Lines of latitude and longitude.

 298 B u i l d Y o u r O w n Q u a d c o p t e r

The distances between lines of latitude, or parallels, will be the same no matter at which
specific latitude they are measured. For instance, at the Equator, a 1° of latitudinal length is
111.116 km, which is almost exactly the same as 1° of longitudinal length. The following
equation holds true for all latitudinal length calculations:

Latitudinal length = π × MR × cos(Φ)/180

where:
 MR = 6367449 m (Earth’s radius)
 Φ = angle subtended in degrees

For a 1° angle subtended and substituted into the above equations, the result is:
(3.14159265 × 6367449 × .9998477)/180 = 111116.024 m or 111.116 km or about 68.9 statute
miles (sm).

Latitude Town Degree Minute Second ± 0.0001°
60° Saint Petersburg 55.80 km 0.930 km 15.50 m 5.58 m

51° 28' 38" Greenwich 69.47 km 1.158 km 19.30 m 6.95 m

45° Bordeaux 78.85 km 1.310 km 21.90 m 7.89 m

30° New Orleans 96.49 km 1.610 km 26.80 m 9.65 m

 0° Quito 111.3 km 1.855 km 30.92 m 11.13 m

Table 11.2 Longitudinal Length Equivalents at Selected Latitudes

Figure 11.10 Lines of latitude and longitude.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 299

Computing Longitudinal Length
Computing longitudinal length is a bit complex as I mentioned above. I used the haversine
formula to calculate the great circle distance between any two points on the Earth’s surface.
Great circle distance is often called as the crow flies, meaning the shortest distance between
two points. The haversine formula was first published by Roger Sinnott in the Sky & Telescope
magazine in 1984. The formula is actually in three parts, where the first step is to calculate
the a parameter. Technically, a is the square of half of the chord between the two coordinate
positions. The second step computes c, which is the angular distance expressed in radians.
The last step is to compute d, which is the linear distance between the two points. The
complete haversine formula is shown below:

a = sin2 + cos(Φ1) × cos(Φ2) × sin2 ∆Φ
2

∆λ
2

c = 2 × atan2 √a, √1 - a
d = MR × c

where:
 Φ = Latitude
 λ = Longitude
MR = Earth’s radius (mean radius = 6371 km)

I am sure that it is possible to calculate this distance manually; however, you have to be
very careful in extending the precision of the numbers involved, since some may become
very small. I chose to write a Java program to test how the haversine formula actually works
with the computer by keeping track of all the tiny numbers involved in the calculations. I did
want to mention for those readers with some math background that the two-parameter atan2
function is used in the second step to maintain the correct sign, which is normally lost when
using the single parameter atan trignometric function.

I set up a simple test to compare the performance of the haversine formula in determining
the path length with Google Earth’s straight-path feature. I arbitrarily choose the following
coordinates for this test:

position 1—53°N 1°W
position 2—52°N 0°W

You should have immediately realized that since one of the positions was on the Prime
Meridian, the test must be located in England. Figure 11.11 is a screenshot of Google Earth
with the path clearly delineated and the path length shown in the Dialog Box as 130.35 km.

The Java test class named DistanceDemo.java was created using the Eclipse integrated
development environment (IDE) and is shown below:

package distance;
import java.util.*;

public class DistanceDemo {
 final static int MR = 6371; // Earth’s radius in km
 static Scanner console = new Scanner(System.in);

 public static void main(String[] args) {
 double lat1, lat2, lon1, lon2, dLat, dLon, a, c, d;

 300 B u i l d Y o u r O w n Q u a d c o p t e r

 System.out.println("Enter lat1 = ");
 lat1 = console.nextDouble();
 lat1 = Math.toRadians(lat1); //all angles must be in radians
 System.out.println("Enter lon1 = ");
 lon1 = console.nextDouble();
 lon1 = Math.toRadians(lon1);
 System.out.println("Enter lat2 = ");
 lat2 = console.nextDouble();
 lat2 = Math.toRadians(lat2);
 System.out.println("Enter lon2 = ");
 lon2 = console.nextDouble();
 lon2 = Math.toRadians(lon2);

 dLat = lat2 - lat1;
 dLon = lon2 - lon1;

 a = Math.sin(dLat/2)*Math.sin(dLat/2)
 +
Math.sin(dLon/2)*Math.sin(dLon/2)*Math.cos(lat1)
 *Math.cos(lat2); //haversine formula
 c = 2*Math.atan2(Math.sqrt(a),Math.sqrt(1-a)); //angular distance
 d = MR*c; // linear distance

 System.out.println("Distance = " + d + " km");
 }
}

Figure 11.11 Google Earth display showing the test path.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 301

Figure 11.12 is a screenshot of the output from the Eclipse IDE console after the
program was run. You can see the coordinates entered as well as the calculated distance
of 130.175 km.

I actually believe the results from the Java program are more accurate than the results
from Google Earth because the Google Earth path distance depended on how accurately I set
the beginning and end points, which is tough to do with the computer’s touch pad. In any
case, the results differed by about 0.1%, which was enough to convince me that the haversine
formula functioned as expected.

There is one more formula that I need to show you in order to complete this navigation
discussion. This formula computes the bearing between two coordinates and will be used in
conjunction with the electronic compass to guide the quadcopter on the proper path.

Computing Bearing
This formula does not appear to have a formal name, but it is used to calculate the initial
bearing between two coordinates by using the great-circle arc as the shortest path distance.

ϕ = atan2(sin(Δλ) × cos(Φ2), cos(Φ1) × sin(Φ2) - sin(Φ1) × cos(Φ2) × cos(Δλ))

where:
Φ = Latitude
λ = Longitude
ϕ = Bearing

This formula, while not nearly as complex as the haversine, will still be demonstrated
using a Java program that I aptly named BearingDemo.java. The program code is shown
below:

package distance;
import java.util.Scanner;

public class BearingDemo {
 static Scanner console = new Scanner(System.in);

 public static void main(String[] args) {
 double lat1, lat2, lon1, lon2, dLat, dLon, phi; // phi is
 the forward bearing

Figure 11.12 Eclipse IDE console output screenshot for the DistanceDemo program.

 302 B u i l d Y o u r O w n Q u a d c o p t e r

 System.out.println("Enter lat1 = ");
 lat1 = console.nextDouble();
 lat1 = Math.toRadians(lat1); //all angles must be in
 radians
 System.out.println("Enter lon1 = ");
 lon1 = console.nextDouble();
 lon1 = Math.toRadians(lon1);
 System.out.println("Enter lat2 = ");
 lat2 = console.nextDouble();
 lat2 = Math.toRadians(lat2);
 System.out.println("Enter lon2 = ");
 lon2 = console.nextDouble();
 lon2 = Math.toRadians(lon2);

 dLat = lat2 - lat1;
 dLon = lon2 - lon1;

 phi = Math.atan2(Math.sin(dLon)*Math.cos(lat2),
 Math.cos(lat1)*Math.sin(lat2)- Math.sin(lat1)*
 Math.cos(lat2)*Math.cos(dLon));

 System.out.println("Bearing = " + phi + " radians");

 phi = (phi/Math.PI)*180; // convert to degrees

 System.out.println("Bearing = " + phi + " degrees");
 }
}

Figure 11.13 is a screenshot of the output from the Eclipse console after the BearingDemo
program was run with the same coordinates as those used in the DistanceDemo program.
I measured the bearing with a protractor on a printed copy of Figure 11.11 and estimated the
true bearing at 148°, which matches the calculated bearing. Ignore the minus sign on
the bearing value, since it is simply a result of the atan2 function. The two Java programs

Figure 11.13 Eclipse IDE console output screenshot for the BearingDemo program.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 303

used above are available on the book’s companion website www.mhprofessional.com/
quadcopter.

One more item that must be discussed regarding the bearing is the difference between
true bearing and magnetic bearing. True bearings are always taken with respect to the true
North (or South) Pole. This is normally the vertical or straight up and down direction on
most maps. Magnetic bearings are taken with respect to the magnetic poles, which deviate
from the true poles. Called magnetic deviation, its value is dependent on where you are taking
a compass reading on the earth’s surface. In my locale, the deviation is approximately 17° W,
which means that I must add 17° to a true bearing in order to determine the equivalent
magnetic bearing. For the test location that I used for the program demonstrations, the
magnetic deviation was approximately 7° W, thus making the magnetic bearing between the
two coordinate positions 155° instead of 148° for the true bearing. There are also magnetic
deviations that are classified as east (E); these must be subtracted from the true bearing to
arrive at the correct magnetic bearing. An old memory aid that pilots and navigators use
to help remember whether to add or subtract is the following:

“East is least and West is best” (subtract for East; add for West)

There is also another compass compensation that usually has to be accounted for in non-
electronic compasses. This is magnetic declination, or the angle between the Earth’s magnetic
lines of force and the measuring compass. Fortunately, we do not need to be concerned with
this compensation, as it is done automatically by the electronic compass module.

This concludes the navigation fundamentals discussion. You should now have sufficient
knowledge regarding how the quadcopter can be guided between geographic coordinate
points.

Return-to-Home Flight Scenario
The discussion in this section is based on my vision of how the VFCS functions in a return-
to-home scenario. There are commercial flight-control systems that incorporate this type
of operation. How the system’s designers implement this function is usually proprietary,
and thus, not available for analysis. I am guessing that some may use a simple type of dead-
reckoning system in which the quadcopter records the angles turned and the time of
flight while not turning, and then simply “plays” back these flight motions to return to base.
This type of dead reckoning may be perfectly adequate for close-in operations in which
distances are short and there is little to no wind to push the quadcopter off its commanded
course. The system I envision is much more robust and could easily counter crosswinds and
much longer path lengths. It is also suited for autonomous operations that I discuss later in
this chapter.

A return-to-home flight command first requires that the coordinates of your initial
launch place be stored in the flight controller. This could be done automatically when the
quadcopter is first powered on or through a sequence of R/C transmitter commands that
the flight controller is programmed to respond to within a predetermined time interval. It
could even be implemented by pressing a dedicated button on the quadcopter. Whatever the
means, the quadcopter needs to know the start point or home coordinates.

The quadcopter is then flown through whatever flight operations are desired until it
receives the command to return home. Sending this command can be done in a fashion
similar to the one previously described for storing home coordinates except, of course, for
pressing a button on the quadcopter. Let us assume a dedicated R/C channel is used to
initiate this operation. This approach is probably the most reliable, although you may not

http://www.mhprofessional.com/quadcopter
http://www.mhprofessional.com/quadcopter

 304 B u i l d Y o u r O w n Q u a d c o p t e r

have the luxury of access to an uncommitted channel, especially if you are using an R/C
system with six or fewer channels.

1. The first step in returning home is to compute both the path distance and the bear-
ing from the quadcopter’s current position to the already stored home position. The
bearing is really the most important computation of the two parameters. Path length
is nice to know and will be used to slow down the quadcopter; however, you can
always manually slow down the quadcopter as it zooms over your home position,
as long as it is on the right course.

2. The second step is to command a yaw until the quadcopter is pointed to the correct
computed magnetic bearing. Remember that the true bearing is done by the formula,
and the appropriate magnetic variation must be added or subtracted to arrive at the
correct magnetic bearing.

3. The third step is to command the quadcopter to proceed in the forward direction at
a reasonable speed. The path length should be continually recomputed until it
reaches a predetermined limit near zero.

4. The fourth step is to slow down and stop the forward motion once the quadcopter is
within a reasonable distance of the home coordinates. I would suggest +/- 50 m
(54.7 yd) as a good selection.

5. The fifth and final step would be to slowly reduce the throttle-power setting until
the hovering quadcopter touches down. This could be done either automatically or
under manual control.

The five-step process shown above assumes the existence of little to no crosswind that
would push the quadcopter off course. The five-step process could be altered a bit to account
for the crosswinds. The bearing would have to be continually recomputed during flight by
using the current position. Some minor aileron commands would then be needed to slightly
turn the quadcopter to the new home bearing. I would definitely not try to yaw the
quadcopter while it is in straight and level flight.

Swarm or Formation Flying
Most likely, you have already seen online videos of quadcopters flying in formation. If not, I
would suggest viewing this video, http://makezine.com/2012/02/01/synchronized-nano-
quadrotor-swarm/.

Formation flying has been a hot-topic research item for several years. The research
focuses on the swarming behavior of insects as they act in a collective manner. There are
important goals that researchers are trying to achieve, in which groups or teams of
quadcopters can accomplish tasks simply not possible with a single quadcopter. The General
Robotics, Automation, Sensing, and Perception (GRASP) Lab at the University of Pennsylvania
has been the predominant organization in this field. One of its chief researchers is Professor
Vijay Kumar, who gave an excellent 15-minute Technology, Entertainment, Design (TED)
presentation back in February, 2012 that I strongly urge you to view before proceeding in this
chapter. Here is the link http://www.ted.com/talks/vijay_kumar_robots_that_fly_and_
cooperate.html. This informative video provides a wealth of information on quadcopter
performance and swarming behavior.

At present, two technologies are used to implement swarming behavior: motion capture
video (MoCap) and close-proximity detection. First, I will discuss MoCap technology and then
the close-proximity detection technology.

http://www.ted.com/talks/vijay_kumar_robots_that_fly_and_cooperate.html
http://www.ted.com/talks/vijay_kumar_robots_that_fly_and_cooperate.html
http://makezine.com/2012/02/01/synchronized-nanoquadrotor-swarm/
http://makezine.com/2012/02/01/synchronized-nanoquadrotor-swarm/

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 305

Motion Capture
In the TED video, the MoCap cameras can be seen mounted high on the GRASP Lab walls
where they have a clear field of view of the flight area. Each quadcopter also has some
reflective material mounted on it to provide a good light target for the cameras. Each
MoCap camera is networked to a host computer that has been programmed to detect the
reflective targets and determine all the quadcopter positions in 3D space. It is probable
that only one of the quadcopters has been designated as the lead quadcopter and that
sensors and decentralized control allow the others to follow it. The host computer would
likely control the lead quadcopter through some type of preprogrammed flight path, and
all the others would just follow the leader. However, the video http://www.geeky
-gadgets.com/quadcopters-use-motion-capture-to-fly-in-formation-video-17-07-2012/
shows a situation in which all the quadcopters are under direct MoCap control as they
execute formation flying.

In this case, the MoCap cameras capture all of the quadcopter’s reflective markers and
send the images to the host computer, which then calculates the position and attitude for
each quadcopter. Precise repositioning to within 1 mm is then transmitted to each quadcopter.
The control frequency is 100 Hz, which means that position and altitude are recalculated
every 10 ms to prevent collisions.

In the GRASP Lab experiments, each quadcopter had a means of determining how close
it was to its neighbor(s) and repositioning itself if the distance was too small. I believe that
distance was only several centimeters, which is very tight but not as tight as the full MoCap
positioning as described above.

Close-Proximity Detection
I will discuss the Parallax Ping sensor as a typical unit that can serve as a close-proximity
sensor. The Ping sensor is shown in Figure 11.14. It has the overall dimensions of 1¾ × ¾ ×
¾ in, which is a bit on the large size for a sensor.

The Ping sensor uses ultrasonic pulses to determine distances. It works in a way similar
to a bat’s echo-location behavior. This sensor may be thought of as a subsystem in that it has
its own processor that controls the ultrasonic pulses used to measure the distance from the
sensor to an obstruction. Figure 11.15 is a block diagram for this sensor. The sensor has a
stated specification range of 2 cm (0.8 in) to 3 m (3.3 yd), which I verified by using the test
setup described later in this section.

The Ping sensor uses a one-wire signal line by which the host microprocessor (BOE)
emits a two-microsecond pulse that triggers the microprocessor on board the sensor to
initiate an outgoing acoustic pulse via an ultrasonic transducer.

Figure 11.14 Parallax Ping sensor.

http://www.geeky-gadgets.com/quadcopters-use-motion-capture-to-fly-in-formation-video-17-07-2012/
http://www.geeky-gadgets.com/quadcopters-use-motion-capture-to-fly-in-formation-video-17-07-2012/

 306 B u i l d Y o u r O w n Q u a d c o p t e r

The test code was downloaded from the Parallax product Web page for product number
28015. The test program is named Ping_Demo_w_PST.spin. The program continually outputs
the distance measured by the sensor in both inches and centimeters. This program also uses
a Spin library object named Ping.spin that acts as a driver and is listed below:

{{

* Ping))) Object V1.2 *
* Author: Chris Savage & Jeff Martin *
* Copyright (c) 2006 Parallax, Inc. *
* See end of file for terms of use. *
* Started: 05-08-2006 *

Interface to Ping))) sensor and measure its ultrasonic travel time.
Measurements can be in units of time or distance. Each method
requires one parameter, Pin, that is the I/O pin that is connected
to the Ping)))’s signal line.

 ┌──────────────────────┐
 │┌───┐ ┌───┐ │ Connection To Propeller
 ││ │ PING))) │ │ │ Remember PING))) Requires
 │└───┘ └───┘ │ +5V Power Supply
 │ GND +5V SIG │
 └─────┬───┬───┬────────┘
 │ │ 3.3K
 │ │ │ Pin

--------------------------REVISION HISTORY------------------------
 v1.2 - Updated 06/13/2011 to change SIG resistor from 1K to 3.3K
 v1.1 - Updated 03/20/2007 to change SIG resistor from 10K to 1K
 }}

Figure 11.15 Parallax Ping sensor block diagram.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 307

CON
 TO_IN = 73_746 ' Inches
 TO_CM = 29_034 ' Centimeters

PUB Ticks(Pin) : Microseconds | cnt1, cnt2 "Return Ping)))’s
 one-way ultrasonic travel time in microseconds

 outa[Pin]~ ' Clear I/O Pin
 dira[Pin]~~ ' Make Pin Output
 outa[Pin]~~ ' Set I/O Pin
 outa[Pin]~ ' Clear I/O Pin (> 2 µs
 pulse)
 dira[Pin]~ ' Make I/O Pin Input
 waitpne(0, |< Pin, 0) ' Wait For Pin To Go HIGH
 cnt1 := cnt ' Store Current Counter Value
 waitpeq(0, |< Pin, 0) ' Wait For Pin To Go LOW
 cnt2 := cnt ' Store New Counter Value
 Microseconds := (||(cnt1 - cnt2) / (clkfreq / 1_000_000)) >> 1
 ' Return Time in µs

PUB Inches(Pin) : Distance 'Measure object distance in
 inches
 Distance := Ticks(Pin) * 1_000 / TO_IN ' Distance In Inches

PUB Centimeters(Pin) : Distance ' Measure object
 distance in centimeters
 Distance := Millimeters(Pin) / 10
‘ Distance In Centimeters

PUB Millimeters(Pin) : Distance 'Measure object
 distance in millimeters
 Distance := Ticks(Pin) * 10_000 / TO_CM ' Distance In
 Millimeters

The following code snippet from the above listing generates the initial pulse that is sent
to the sensor. The onboard sensor then sets the signal line high and then listens for the return
pulse with another ultrasonic transducer. The echo-return acoustic pulse causes the onboard
processor to change the signal line from high to low. The Ping code measures the time
interval, in microseconds, that has elapsed while the signal level was going from high to low.
The system-clock counter value is stored in the variable cnt1 when the high value is
detected and in the variable cnt2 when the sensor changes the signal-line level to low. The
difference, cnt2 - cnt1, must then be the elapsed time in the units of system-clock cycles.

 outa[Pin]~ ' Clear I/O Pin (which is
 P0 set by the test code object)
 dira[Pin]~~ ' Make P0 an output pin
 outa[Pin]~~ ' P0 is set high

 308 B u i l d Y o u r O w n Q u a d c o p t e r

 outa[Pin]~ ' Make P0 low (This creates
 an approximate 2 µs pulse)
 dira[Pin]~ ' Make P0 an input pin
 waitpne(0, |< Pin, 0) ' Wait For P0 to go high
 cnt1 := cnt ' Now store the current
 system clock counter value
 into cnt1
 waitpeq(0, |< Pin, 0) ' Wait For P0 to go low
 cnt2 := cnt ' Now store the current
 system clock counter
 value into cnt2
 Microseconds := (||(cnt1 - cnt2) / (clkfreq / 1_000_000)) >> 1
 ' Compute the return time in µs

The test code also incorporates a provision to activate two LEDs, depending upon the
measured distance. The LED connected to P1 will turn on when the distance is less than
6 inches. The other LED connected to P2 will turn on when the distance exceeds 6 inches. The
P1 LED will also turn off when the distance exceeds 6 inches. The test code is shown below:

" ***************************************
" * Ping))) Demo with PST & LED’s *
" * Author: Parallax Staff *
" * Started: 06-03-2010 *
" ***************************************
{{
Code Description: In this example there are two LED’s to indicate a
distance. If the distance is further than 6 inches than LED 1 will
turn on, and if the distance is closer than 6 inches than LED 2
turns on; while either LED 1 or 2 is on, the alternate LED will be
off. There is a numerical display of the values in the Parallax
Serial Terminal (PST) at 9600 baud (true).
}}

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 PING_Pin = 0 ' I/O Pin For PING)))
 LED1 = 1 ' I/O PIN for LED 1
 LED2 = 2 ' I/O PIN for LED 2

 ON = 1
 OFF = 0
 Distlimit = 6 ' In inches

VAR
 long range

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 309

OBJ
 Debug : "FullDuplexSerial"
 ping : "ping"

PUB Start
 dira[LED1..LED2]~~
 outa[LED1..LED2]~

 Debug.start(31,30,0,9600)
 waitcnt(clkfreq + cnt)

 repeat ' Repeat Forever
 debug.str(string(1,"PING))) Demo ", 13, 13, "Inches = ", 13,
 "Centimeters = ", 13))

 debug.str(string(2,9,2))
 range := ping.Inches(PING_Pin) ' Get Range In Inches
 debug.dec(range)
 debug.tx(11)

 debug.str(string(2,14,3))
 range := ping.Millimeters(PING_Pin) ' Get Range In
 Millimeters
 debug.dec(range / 10) ' Print Whole Part
 debug.tx(".") ' Print Decimal Point
 debug.dec(range // 10) ' Print Fractional
 Part
 debug.tx(11)

 range := ping.Inches(PING_Pin) ' Get Range In
 Inches

 if range < Distlimit ' Comparing range to a
 set value of 6 inches
 outa[LED1] := ON ' P1 is on
 outa[LED2] := OFF ' P2 is off
 elseif range > Distlimit ' If range is
 further than 6 inches
 outa[LED1] := OFF ' P1 is off
 outa[LED2] := ON ' P2 is on

Figure 11.16 shows the setup of the test components on the BOE solderless breadboard.
The P1 LED is at the top of the breadboard, and P2 is near the bottom. A book was placed 8
in from the Ping sensor to reflect the ultrasonic pulses. A PSerT screenshot shown in Figure
11.17 illustrates the results of the test setup shown in Figure 11.16.

 310 B u i l d Y o u r O w n Q u a d c o p t e r

Figure 11.16 Ping sensor test setup.

Figure 11.17 PSerT screenshot for the Ping sensor test.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 311

Near-to-Ground Altitude Measurements
A Ping sensor can also be mounted on the underside of the bottom chassis plate, pointing
straight down, which would provide near-to-ground altitude measurements. The maximum
Ping sensor range is 3 m (3.3 yd), which is more than enough to provide good above-ground
readings for hovering or for approach-to-landing operations. Figure 11.18 shows a Ping
sensor that is mounted on the bottom chassis plate and has a clear field of view of the ground.

It could also be used as part of the close-proximity sensor set discussed in the section on
formation flying. In such a situation, it would provide vertical clearance measurements
between it and any quadcopter flying below it.

Ultrasonic Sensor Concerns
There are some conditions that you should be aware of if you want to use an ultrasonic
sensor successfully for close-proximity detection. These conditions are listed and discussed
below:

•	 Wind turbulence
•	 Propeller acoustic noise
•	 Electrical noise both conducted and radiated
•	 External radio interference
•	 Frame vibration

Wind turbulence is created by the propellers. The only realistic solution to minimize this
type of interference is to mount the sensor as far as possible from any propeller.

Propeller acoustic noise adds additional acoustic energy to the sensor, which generally
reduces the overall ultrasonic transducer sensitivity. Careful sensor placement reduces this
effect along with avoiding a direct structural mount near any motor.

The ultrasonic sensor’s electrical power supply should be directly connected to the
same power source used by the flight-controller board. In the Elev-8 configuration,

Figure 11.18 Bottom-mounted Ping sensor for altitude measurements.

 312 B u i l d Y o u r O w n Q u a d c o p t e r

the HoverflyOPEN controller-board power is supplied through the BEC lines (as I
described in Chapter 5). The AR8000 receiver, in turn, is powered from the flight-control
board. Using the power-distribution board actually helps reduce the interference by
providing a ground-plane-shielded power source for the ESCs, which are primary potential
noise sources.

Strong interference may also be present as conducted electrical noise. This type of noise
is often eliminated by using a simple resistor/capacitor (RC) filter. Figure 11.19 shows an RC
filter that can be connected at the sensor power inputs to eliminate any conducted electrical
noise interference.

Electrical currents that flow through wires produce an electromagnetic (EM) field. Strong
currents that also carry noise pulses produce what is known as radiated electrical noise. The
ultrasonic-sensor power leads should be twisted to mitigate any possible radiated noise
interference. You also might need to use a shielded power cable if the interference is
particularly severe. Ground only one end of the shielded cable at the host microprocessor
side to stop any possible ground loop current from forming.

There are also several radio transmitters on board the Elev-8 that can generate lower
levels of EM interference. Usually they will not be an issue provided you have taken some
or all of the control measures already mentioned.

The final interference might come from frame vibrations, which can upset the sensor’s
normal operation. This type of interference is easily minimized by securing the sensor in a
small frame that, in turn, is mounted on the quadcopter’s frame with rubber grommets. This
is precisely the same type of mounting arrangement that is used to mount the HoverflyOPEN
control board on the Elev-8.

Maneuvering the Quadcopter to Maintain Its Formation Position
Maintaining position in a formation is really a matter of providing very slight control inputs
to shift the quadcopter’s position a few centimeters. Ping sensors mounted at the ends of
each quadcopter boom are easily programmed to provide an output on two pins that can
signal to the flight controller that the quadcopter is either closer to or farther away from a
neighboring quadcopter than it should be. The precise control inputs that are needed will
probably be determined by trial and error, since only small shifts in rotor rotation speeds
would be required to accomplish centimeter-scale movements. It would make no sense to
actually bank or pitch the quadcopter for tiny lateral movements. Massive control inputs,
such as banking or pitch changes, would result in excessivly large displacements, which are
definitely not required. Instead, just changing the rotation speeds on one or two motors by
100 to 200 r/min may very well accomplish the required shifts. Such precise control will
likely need to be repeated 10 to 20 times per second to maintain accurate positioning.

Figure 11.19 RC noise filter for conducted electrical noise.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 313

Other Close-Proximity Sensors
Several other manufacturers provide ultrasonic sensors that will function quite well
for close-proximity detection. Figure 11.20 shows the MaxBotix HRLV-Max Sonar®–
EZ1™, model MB1013, which is a very compact sensor with overall dimensions of
approximately ¾ × ¾ × ¾ in.

This versatile sensor has many more operational functions than the Ping sensor.
The following summary in Table 11.3 was extracted from the MaxBotix data sheet, to
provide you with some additional background on this sensor type. The pin connections
for this sensor are shown in Figure 11.21.

Figure 11.20 The MaxBotix HRLV-Max Sonar® – EZ1™, model MB1013.

Pin No. Name Description

1 Temperature sensor Connect external temperature sensor to improve overall
accuracy.

2 Pulse-width output This pin outputs a pulse-width representation of the
distance with a scale factor of 1 microsiemens (µS)
per mm. Output range is 300 µS for 300 mm (11.81 in)
to 5000 µS for 5000 mm (196.85 in).

3 Analog voltage output This pin outputs an analog voltage-scaled representation
of the distance with a scale factor of (VCC /5120) per
1 mm. The distance is output with a 5-mm resolution.

4 Ranging start/stop If this pin is left unconnected, or held high, the sensor
will continually measure and output the range data. If
held low, the HRLV-MaxSonar-EZ will stop ranging.

5 Serial output The serial output is RS232 format (0 to VCC) with a
1-mm resolution. If TTL output is desired, solder the TTL
jumper pads on the back side of the PCB, as shown in
Figure 11.20.

6 VCC The sensor operates on voltages from 2.5 V to 5.5 V DC.

7 GND This is the sensor ground pin.

Table 11.3 MaxBotix Ultrasonic Pinout Descriptions

 314 B u i l d Y o u r O w n Q u a d c o p t e r

Real-Time Range Data—When pin 4 is low and then brought high, the sensor will operate
in real time, and the first reading that is output will be the range measured from this first
commanded range reading. When the sensor tracks that the RX pin is low after each range
reading and then the RX pin is brought high, unfiltered real-time range information can be
obtained as quickly as every 100 ms.

Filtered Range Data—When pin 4 is left high, the sensor will continue to range every 100
ms, but the output will pass through a 2-Hz filter, through which the sensor will output the
range, based on recent range information.

Serial Output Data—The serial output is an ASCII capital R, followed by four ASCII digit
characters representing the range in millimeters, followed by a carriage return (ASCII 13).
The maximum distance reported is 5000 mm. The serial output is the most accurate of the
range outputs. Serial data sent is 9600 baud, with 8 data bits, no parity, and one stop bit.

One important constraint that you must be aware of is the Sensor Minimum Distance
or No Sensor Dead Zone. The sensor minimum reported distance is 30 cm (11.8 in). However,
the HRLV-MaxSonar-EZ1 will range and report targets to within 1 mm (0.04 in) of the front
sensor face; however, they will be reported as at a 30-cm (11.8 inches) range.

Another close-proximity sensor that you might consider using is one based on invisible
light pulses. This sensor is the Sharp GP2D12, which is an infrared (IR) light-ranging sensor.
It is shown in Figure 11.22.

Figure 11.21 Pin descriptions for the MaxBotix ultrasonic sensor.

Figure 11.22 Sharp GP2D12 IR range sensor.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 315

The IR light pulses used by this sensor are similar to the IR pulses used in common TV
remote controls and are rather impervious to ambient light conditions. The pinout for this
sensor is shown in Figure 11.23 and it has only three connections, as was the case for the Ping
sensor. The VCC supply range is from 4.5 to 5.5 V, and the output is an analog voltage that is
directly proportional to the target range. Figure 11. 24 shows a graph of the VO pin voltage
versus the target range.

This type of output means that you must use an analog-to-digital converter (ADC) to
acquire the numerical range value. The range precision will also be dependent on the number
of ADC bits. The Parallax Propeller chip uses 10-bit sigma-delta ADCs, which means a
1024-bit resolution over the input voltage range. Figure 11.23 indicates a maximum output
of 2.6 V at 10 cm (3.94 in), which incidentally, is also the minimum range the sensor will
detect. I would probably use the VCC as an ADC reference voltage, since it is readily available
and encompasses the maximum expected input voltage.

The precision calculations would be as follows:

 Max possible input voltage/210 = 5/1024
 = 0.004883 V per count or
 = 4.883 mV per count

The maximum range is 80 cm (31.5 in), which generates a 0.4 V output. Therefore, the total
voltage change for the specification range of 10 to 80 cm must be:

 Voltage at 10 cm 2.6
 Voltage at 80 cm - 0.4

 Interval voltage 2.2

Next divide 2.2 V by 70 to arrive at volts per centimeter (Note: I am assuming linearity,
which is not actually the case, but it will have to suffice without overly complicating things.)

2.2/70 = .03143 V per cm or
 = 31.43 mV per cm

Figure 11.23 Sharp GP2D12 sensor pinout.

 316 B u i l d Y o u r O w n Q u a d c o p t e r

Now using the 4.883 mV per count calculated above, it is easy to see that the ultimate
precision is:

 (31.43 mV per cm)/(4.883 mV per count) = 6.44 counts per cm or
 rounding to 6 counts per cm.

This means each centimeter in the interval can be resolved to approximately one sixth of
a centimeter or about 16 mm (0.63 in), which should be sufficient for most close-proximity
operations.

The above calculations are fine, but you are likely puzzled as to the actual numbers that
you could expect from the ADC. Three values are shown below that represent the minimum,
midpoint, and maximum ranges:

 Minimum (2.6/5.0) × 1024 = 532
 Midpoint (0.68/5.0) × 1024 = 139
 Maximum (0.40/5.0) × 1024 = 82

Figure 11.24 Analog voltage out versus target range.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 317

I always like to do a sanity check on my calculations, which follows:

 Count at 10 cm = 532
 Count at 80 cm = - 82

Count difference = 450 which represents the 70 cm interval

450 counts/6.44 counts per cm ≅ 70 cm Checks out!

I did mention in the above calculations that I assumed that analog voltage versus
distance curve was linear or a straight line, which it is obviously not. If you desire absolute
precision, you would have to develop either a lookup table or an analytic equation that
modeled the curve. The latter is actually not hard to do by using the Microsoft Excel feature
that automatically creates best-fit equations from a data set, but that is best left for
another time.

One more special type of proximity sensor I would like to discuss is a LIDAR. The term
LIDAR is a combination word made from the words light and radar. It uses an IR laser beam
to detect, and many times, map out distant objects. Until recently, LIDAR sensor systems
were bulky, consumed substantial power, and were very expensive. But that has changed
recently, to the point where very capable systems are now available that can be mounted on
a quadcopter. They are also relatively inexpensive. LIDAR is able to range distant objects at
or beyond 3 km (1.86 mi) because it uses high power and IR laser pulses of very short
duration. The reflected pulses are detected by sensitive, optical-photo receivers, and the
distances are computed by precisely the same method used by traditional radar systems.

Figure 11.25 shows a LIDAR kit, model ERC-2KIT, that is sold by Electro-Optic Devices.
The kit contains a single-board ranging controller as well as the transmitter and the receiver
boards, as shown in the figure. It does not come with a laser diode, which must be purchased

Figure 11.25 LIDAR system model ERC-2KIT, from Electro-Optic Devices.

 318 B u i l d Y o u r O w n Q u a d c o p t e r

separately. Diode selection depends upon the intended LIDAR application because diodes
are available in a range of both wavelength and power capacity. Common wavelengths are
850 and 905 nanometers (nm), both of which are in the IR range. Power ratings can vary from
a low of 3 W to a high of 75 W, which is a very powerful laser that can cause severe eye injury
if not used carefully.

Figure 11.26 shows the OSRAM SPL PL85 LIDAR-capable laser-pulse diode that is rated
at 10 W and capable of ranging up to about 1 km (0.62 mi). LIDAR pulses are very short in
time duration, typically some tens of nanoseconds. However, the current pulse can easily
exceed 20 A.

Electro-Optic Devices provides a test and control board for their LIDAR ERC-2KIT,
which is very useful for development purposes. Electro-Optic Devices calls this board the
BASIC Programmable Laser Ranging Host Module, model EHO-1A, and it is shown in
Figure 11.27.

This board uses a Parallax Basic Stamp II (BS2) as a controller, which fits nicely into the
whole Parallax controller discussion that has been ongoing in this book. The BS2 uses a
derivative of the BASIC language named PBASIC to implement its microcontroller functions.
BASIC, as most of you already know, is procedural and not object oriented as is the Spin
language used for the Parallax Propeller microcontroller. Nonetheless, it is more than
adequate for this application, and it is really very easy to program in BS2 BASIC. The BS2
also uses The Basic Stamp Editor, which is a different integrated development environment
(IDE) from the Propeller chip IDE. It is freely available to download from the Parallax
website.

The PBASIC instructions in the following section are excerpted from the Electro-Optic
Devices’s EHO-1A manual to illustrate how to display data on the LCD screen and how to
read from and write to the peripheral modules.

Figure 11.26 A LIDAR-pulse diode.

Figure 11.27 BASIC Programmable Laser Ranging Host Module, model EHO-1A,
from Electro-Optic Devices.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 319

Writing to the EHO-1A LCD Screen
The LCD display must be written to serially from the BS2. The BS2 instruction SHIFTOUT
accomplishes this task. There are four LCD-oriented subroutines available in each example
program. They are:

1. DSP_INIT— Initializes the LCD Display
2. DSP_TEXT— Sends a text string to the LCD
3. DSP_CLR— Clears the LCD
4. DSP_DATA— Displays binary data on the LCD (up to 4 digits)

At the top of each example program is a section for EEPROM DATA. ASCII string data
is stored in this location to be written to the LCD by the DSP_TEXT subroutine. The LCD
string format is as follows:

LABEL DATA L#P#,LENGTH,“STRING INFO”

The LABEL can be any valid name for the string. DATA indicates to the tokenizer that this
information will be stored in EEPROM. L#P# is the line number (1 or 2) and position number
(1–16) where the first character of text is to be located in the LCD. LENGTH is the number of
characters that follow inside the quotation marks. For the above example, this program line
might look like this:

T_STRG DATA L2P1,11,“STRING INFO”

When the DSP_TEXT subroutine is called after the message pointer MSG is set to the
string’s label: MSG = T_STRG , the text message “STRING INFO” is displayed at the first
position of line 2 on the LCD. Similarly, BCD data can be written to the LCD using the
DSP_DATA subroutine. A binary number to be displayed in the range of 0–9999 must be
stored in VALUE. The LCD location pointer LOC must be set to the location of the first digit
of a four-digit result. Before calling the DSP_DATA subroutine, a selection must be made
between the two decimal point formats for the four-digit display (NNNN or NNN.N). Two
examples follow:

1. To display the number 1234 beginning at character position 10 in line 1 of the LCD:

VALUE = 1234
LOC = L1P10
D_FLAG = XXXX
GOSUB DSP_DATA

2. To display the number 456.7 beginning at character position 3 in line 2 of the LCD:

VALUE = 4567
LOC = L2P3
D_FLAG = XXX_X
GOSUB DSP_DATA

 320 B u i l d Y o u r O w n Q u a d c o p t e r

Communicating with Peripheral Modules
The example programs each have slight differences in the data acquisition subroutines and
should be examined closely before writing your own. The ECH-4 is especially unique, since
it uses a single bidirectional serial bus. The basic procedure is described in the following
section.

Writing to a Peripheral Module
Set the COMMAND variable to the command or data byte to be written to the module, for
example:

COMMAND = $00

Next, bring the chronometer select signal ‾CS low to enable communication with the
module. Now use the BS2 SHIFTOUT instruction to send the byte to the module,

SHIFTOUT HDO, HCLK, MSBFIRST, [COMMAND]

Now bring ‾CS back high to disable communication and acknowledge the end of a write.

Reading from a Peripheral Module
Each module has its own manner of indicating that data is available to be read. See the
individual examples for more information. Generally, the read is performed similarly to
the write. Bring the chronometer select signal ( ‾CS) low to enable communication with the
module. Now use the BS2 SHIFTIN instruction to read the byte from the module:

SHIFTIN HDI, HCLK, MSBPRE, [DATABYTE]

Now bring ‾CS back high to disable communication and acknowledge the end of a write. The
read information is now stored in the variable DATABYTE.

Autonomous Behavior
Autonomous behavior happens when the quadcopter performs tasks without direct human
operator control. A common autonomous task might be to fly a preset path, which could
even include taking off and landing without any human intervention. Such a task would
necessarily have to have predetermined coordinates already programmed into the flight-
controller’s memory. These coordinates are normally called waypoints and are just a series of
latitude and longitude coordinate sets that the quadcopter will fly to in a preset sequence. Of
course, flying a preset path without any other function would be fairly meaningless beyond
giving you the satisfaction of being able to do it. Taking video or periodic still photographs
while flying the path would be a much more meaningful experience and would illustrate the
versatility of the quadcopter. Photographic aerial damage assessment after a natural disaster
would be a good fit for an autonomous quadcopter mission.

Creating a virtual map of an indoor environment is another interesting task that is
currently being developed by a number of organizations. The quadcopter would be equipped
with a type of LIDAR as discussed above. The LIDAR would usually be mounted on an
automated pan-and-tilt mechanism. A typical and rather inexpensive mount is shown in
Figure 11.28.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 321

Using the ERC-2KIT requires only that the lightweight transmitter and receiver boards
be mounted with a pair of signal cables connected to the ranging controller. In a video shown
in Professor Kumar’s TED presentation, you can see mapping being done by a quadcopter
within a building. Incorporating artificial intelligence (AI) within the flight controller helps
the quadcopter avoid obstacles and keeps it from being trapped in a room. This important
topic is discussed further in the next section because it is a vital component to the successful
completion of an indoor mapping task.

Artificial Intelligence
Artificial intelligence is an extremely interesting topic that I have studied for a number of
years. I will not present a full AI discussion but instead will focus on the essential ideas that
are directly applicable to quadcopter operations in a confined space. The essential goal for
this specific AI application is to equip the quadcopter controller with sufficient “reasoning”
capability so that it can autonomously avoid obstacles.

Researchers have already determined that the AI methods of Fuzzy Logic (FL) and, more
specifically, Fuzzy Logic Control (FLC) are particularly well suited for autonomous robotic
operations. Let me start by stating that there is nothing “fuzzy” or “confused” about this AI
field of study; it is simply a name applied to reflect that it incorporates decision ranges in
lieu of traditional, discrete, decision points of yes/no, true/false, equal/not equal, and so
on. I need to show you some basic FL concepts before proceeding any further.

Some Basic FL Concepts
Professor Lufti Zadeh invented FL in 1973. He applied set theory to traditional control theory
in such a way as to allow imprecise set membership for controlling purposes instead of
using normal, precise, numerical values, as was the case before FL. This impreciseness
allows noisy and somewhat varying control inputs to be accommodated in ways that were
not previously possible.

FL relies on the propositional logic principle, Modus Ponens (MP), which translates to
“the way that affirms by affirming.” An equivalent logical statement is:

IF X AND Y THEN Z

where X AND Y is called the antecedent and Z is the consequent.

Figure 11.28 Pan-and-tilt mechanism for LIDAR mapping.

 322 B u i l d Y o u r O w n Q u a d c o p t e r

Next, I will use a simple room-temperature-control example to demonstrate the
fundamental parts that make up an FLC solution. Normally, you might have the following
control algorithm in place to control an indoor room:

IF Room Temperature <= 60° F THEN Heating System = On

This reflects precise measurements and a definitive control action. It is also easily
implemented by a “dumb” thermostat. Transforming the above control statement into an FL
type statement might lead to:

IF (Room too cool) THEN (Add heat to room)

You should readily perceive the input statement's impreciseness, yet there is a certain
degree of preciseness in the outcome or output action. However, do not make the mistake of
thinking that FL does not use numerical values; it does, but they are derived from a set
of values.

Room temperatures may be grouped or categorized into regions with the following
descriptors:

•	 Cold
•	 Cool
•	 Normal
•	 Warm
•	 Hot

If you were to survey a random group of people, you would quickly find that one
person’s idea of warm might be another person’s idea of hot, and so forth. It quickly becomes
evident that some type of membership value must be assigned to different temperatures in
the different regions. In addition, a graph of temperature-versus-membership value could
take on different forms, depending upon how the survey was taken. Triangular and
trapezoidal are the two graph shapes that are normally used with membership functions
and that vastly simplify FL calculations. Membership values range from 0 to 100%, where 0
indicates no set members are present, while 100% shows all set members are within the
region. By set members, I mean the discrete temperatures on the horizontal axis. Figure 11.29
shows the five membership functions for the five temperature regions.

The use of these shapes for membership functions avoids arbitrary thresholds
that would unnecessarily complicate passing from one region to the next. It is entirely
possible, and in fact desirable, that a given temperature have membership in two regions

Figure 11.29 Temperature membership functions.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 323

simultaneously. Not every temperature point has to have dual or even triple membership,
but temperatures on the region’s edges should be so assigned except for the extremis ones
associated with the very cold and the very hot trapezoidal regions, for example, tmin and tmax

of Figure 11.29. This format allows the input variable to gradually lose membership in one
region, while increasing membership in the neighboring region. The translation of a specific
temperature to a membership value in a selected region is known as fuzzification. The
complete set of membership values for the input temperature is also referred to as a fuzzy set.

The combination of fuzzy sets and Modus Pons relationships are the needed inputs
to a rule set that decides what action to take for the control inputs. FLC may be analyzed as
three stages:

1. Input—This stage takes sensor input and applies it to the membership function to
generate the corresponding membership values. Values from different sensors may
also be combined for a composite membership value.

2. Processing—Takes the input values and applies all the appropriate rules to eventually
create an output that goes to the next stage.

3. Output—Converts the processing result to a specific control action. This stage is also
called defuzzification.

The processing stage may have dozens of rules, all in the form of IF / THEN statements.
For example:

IF (temperature is cold) THEN (heater is high)

The antecedent IF portion holds the “truth” input value that the temperature is “cold,”
which triggers a “truth” result in the heater-output fuzzy set that its value should be “high.”
This result, along with any other valid rule outputs, is eventually combined in the output
stage for a discrete and specific control action: so called defuzzification. You should also note
that, as a given rule, the stronger the truth-value is for an input, the more likely it will result
in a stronger truth-value for the output. The resultant control action may not be the one
expected, however, since control outputs are derived from more than one rule. For instance,
in the example of the room heating and cooling system, if a fan were used, it is entirely
possible that the fan’s speed might be increased, depending upon the rule set and whether
or not the heater is set on high.

The AI core of FL lies in the construction of the rule set, which basically encapsulates the
knowledge of problem-domain experts in crafting all the rules. Typically, subject matter
experts (SMEs) would be asked a series of questions, such as “if so and so happened, what
would your response be?” These questions and the SME answers would then constitute the
rules set as a series of IF/THEN statements. The usefulness of an FLC solution is totally
dependent upon the quality of the SME input.

This concludes my FL basics introduction, and I will now return to how FLC is used with
quadcopters.

Quadcopter FLC Applications
There are two common types of FLCs:

1. Mamdani
2. Sugeno

 324 B u i l d Y o u r O w n Q u a d c o p t e r

Mamdani types are the standard FLCs, in which there are membership shapes for both
their input and output. Defuzzification of the output fuzzy variables is done by using a
center-of-gravity, or centroid, method. Sugeno types are simplified FLCs, in which only
inputs have membership shapes. Defuzzification is done by the simpler weighted average
method. I will be discussing only the Mamdani FLC because that seems to be the most
popular approach for quadcopter FLC.

FLC commonly uses the term error (E), which is the actual output minus the desired
output. I will use Z as the variable for the error input. It is also very common to use the rate
of change of the error variable as an input, which I will show as dE where the d represents
the time derivative of E. Finally, accumulated error should be accounted for. It will be
represented by iE where the i represents the error integrated (summed) over a time interval.
If all this looks vaguely familiar, I will refer you back to Chapter 3 where the proportional,
integral, and derivative (PID) controller was introduced. FLC controllers function as PID
controllers with some additional pre- and postprocessing to account for the FL components.

The input variables Z, dE, and iZ also need to be multiplied by their gains, GE, GDE, and
GIE respectively. The output variable will be designated Z, and it also has a gain of GZ.

Matlab®
Matlab® is a powerful, scientific-modeling and math computational system that will be the
basis for the rest of this discussion. Matlab® has a variety of toolkits that expand its
capabilities, including a Fuzzy Logic Toolkit. This toolkit has the following characteristics:

•	 Mamdani inference.
•	 Triangular central membership function with the rest as trapezoidal shapes.
•	 The FL rules set will follow this form:
 if (Ez is E) and (dEz is DE) and (iEz is IE) then (Z is Zz), where E, DE, IE, and Zz are

fuzzy sets.

•	 Defuzzification method is centroid or center of gravity.
•	 AND operator implemented as the minimum.
•	 Implication is a minimum function.
•	 Tuning of input and output gains will be done by trial and error.

Figure 11.30 is a block diagram of a Matlab® quadcopter control system. There are
four FL controllers shown in the diagram: Z, roll, pitch, and yaw. The Z controller acts as a
kind of master because it controls altitude or height above the ground. Obviously, if the
quadcopter is not above the ground, it is not flying; and the three other controller actions are
moot. Each FL controller takes the four inputs that are the same primary ones first mentioned
in Chapter 3:

1. Throttle
2. Elevator
3. Aileron
4. Rudder

Each FL controller also has four outputs, one for each of the quadcopter motors. You
may be able to see the membership functions drawn as three generic-triangle shapes in each
of the FL controller blocks. They simply symbolize that each block constitutes an input stage.
The Aggregation block is a combination processing and output stage that holds all the fuzzy
set rules as well as the logic to combine all four FL controller outputs.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 325

The Z controller always has equal power supplied to each motor so that only vertical
travel is allowed. If FZ is one output, then 4FZ must be supplied to all four motors. This power
level must always be maintained if the quadcopter is to remain at a commanded altitude.
Other controllers can require certain motors to speed up and others to slow down in order
to achieve a yaw, pitch, or roll, but the net overall power will always result in a net of 4FZ. It
is entirely possible that the sets of fuzzy rules will limit or prohibit certain combinations of
control inputs, since they would be physically impossible to perform.

The Z controller is probably the easiest to understand because it controls motion along
only one axis. Let’s say that the proportional control input (E) is an error signal that is the
difference between the commanded altitude and the actual altitude. Also present will be
the derivative (dE) and integral (iE) inputs that makeup the totality of the PID control system.
The likely proportional input fuzzy sets might be:

•	 Go up
•	 Hover
•	 Go down

The derivative and integral input fuzzy sets might be:

•	 Negative
•	 Equal
•	 Positive

The output fuzzy set, assuming a Mamdani setup, might be:

•	 Go up a lot
•	 Go up

Figure 11.30 Matlab® quadcopter control-system block diagram.

 326 B u i l d Y o u r O w n Q u a d c o p t e r

•	 No change
•	 Go down
•	 Go down a lot

Figure 11.31 shows the probable fuzzy set membership functions for the Z parameter
using the listed control actions. Notice that four out of five membership shapes are
trapezoidal and only the No Change is sharply triangular, thus reflecting the expert opinions
that most often some control action is needed to maintain altitude.

Table 11.4 shows the probable rules outputs given all nine combinations for the three Z
output variables Z, dZ, and iZ. Remember that these outcomes are suggested by SMEs given
the stated conditions for the membership variables. Sometimes this rule table is referred to
as an inference table, reflecting the MP background.

Figure 11.31 Z-output fuzzy set membership functions.

dZ-iZ Z Up No Change Down

Negative Negative GDAL GD NC

Negative Equal GDAL GD NC

Negative Positive GDAL GD NC

Equal Negative GD GU GU

Equal Equal GD NC GU

Equal Positive GD GU GU

Positive Negative GU GU GUAL

Positive Equal GU GU GUAL

Positive Positive GU GU GUAL

Where:
GUAL = Go up a lot
 GU = Go up
 NC = No change
 GD = Go down
GDAL = Go down a lot

Table 11.4 Z- Controller Rules Table

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 327

Of course, the relative results of the error terms depend very much upon the gains
associated with their PID inputs. A larger gain will add more weight to a specific input,
which could cause somewhat of a biased operational result. Too much gain can, and often
will, result in unstable or oscillatory behavior that makes the quadcopter unflyable.

ViewPort™ Fuzzy Logic Functions
ViewPort™ is a software development tool for the Propeller chip that was developed and
marketed by myDancebot.com, a Parallax partner. ViewPort™ contains a fuzzy logic view
as part of the ViewPort™ Development Studio software suite. You can incorporate FL objects
into your programs with this tool. It will greatly enhance your ability to create quadcopter
FLCs based on the Propeller chip and the Spin language.

The following discussion has excerpts from the ViewPort™ manual to help clarify how
FL could be incorporated into Spin programs.

ViewPort comes with a Graphical Control Panel view found in the Fuzzy view, and a Fuzzy
Logic Engine implemented in the fuzzy.spin object. ViewPort’s fuzzy logic implementation
consists of fuzzy maps, fuzzy rules, and fuzzy logic functions.

Figure 11.32 is a screenshot of the ViewPort™ program running a Lunar-Lander simulation
that uses an FLC. In the lower pane, you should also be able to see the three-input-variable

Figure 11.32 FL Lunar Lander simulation running on the ViewPort application.

 328 B u i l d Y o u r O w n Q u a d c o p t e r

membership function graphs, which represent altitude, velocity, and thrust. I also extracted
a portion of Figure 11.32 to show you a close-up view of the resultant rules matrix that shows
all the possible outcomes for the velocity and altitude variables, as applied to the relevant
rules.

Figure 11.33 shows this resultant rules matrix with the altitude and velocity both in the
positive region. When you look at the shaded matrix area, it appears that the combined
output would be approximately 3. It also appears that the ViewPort™ FL output does not
use the centroid, or center-of-gravity approach but relies more on a weighted average. I
really do not believe it greatly affects the overall FLC operation, at least in this case.

This last section concludes my AI and FL discussion and also finishes this book. I hope
that you have gained some knowledge of and insight on how to build a quadcopter and how
it functions. I have tried to provide you with a reasonable background that explains how and
why the quadcopter performs as it does and also how to modify it to suit your own personal
interests.

Remember, have fun flying the quadcopter, but also be aware of your own and others
safety!

Summary
I began the chapter by discussing how a virtual quadcopter could return to its start position,
or home. To accomplish this feat, the quadcopter would need an electronic compass sensor,
which I both described and demonstrated.

I followed the introduction with a brief discussion of what longitudinal path lengths are
and how to calculate them. Next, we explored the haversine formula and how it could be
used to compute the great-circle path length between two sets of geographic coordinate
pairs. We then looked at how to compute the relative true bearing between these coordinates.
I next showed how to derive the magnetic bearing once the true bearing was determined, as
the electronic compass mentioned earlier works only with magnetic bearings.

A discussion on formation flying followed that included specific close-proximity sensors,
which partly enabled this type of precision quadcopter flying. A demonstration was shown,
using a Parallax ultrasonic sensor, that permitted quadcopters to operate within 2 cm (0.79
in) of each other. I also discussed some concerns that you should be aware of regarding using
this type of sensor on a quadcopter.

I next discussed a very small analog ultrasonic sensor that could also be used for close-
proximity operations. I showed how this sensor could be connected to and used with one of
the Parallax Propeller analog-to-digital inputs.

Figure 11.33 Resultant rules matrix.

 C h a p t e r 1 1 : E n h a n c e m e n t s a n d F u t u r e P r o j e c t s 329

The next section included an introduction to LIDAR, which is a combination word for
light and radar. It is a very powerful sensor system that is capable of both obstacle detection
and carrying out long-range mapping operations to over 3 km (1.86 mi). LIDAR has also
been used in many autonomous robotic projects.

I next discussed fuzzy logic (FL), which is a branch of the artificial intelligence (AI) field of
study that is particularly well suited for quadcopter control applications. I tried to provide a
somewhat comprehensive introduction to FL and fuzzy logic control (FLC) by using a room
heating and cooling example. In this example, you saw input and output membership
functions as well as the rule set. The rule set captures and encapsulates human expertise
such that it can be applied to provide “intelligent” decisions based upon a given set of input
values from the membership functions.

An FLC application was next shown to illustrate how FL could be applied to an operating
quadcopter. I also used a Matlab® project to further illustrate quadcopter FLC operations.

The chapter concluded with an introduction to ViewPort™, which is a complementary
Propeller-chip development environment that happens to have built-in FL functions. Using
ViewPort™ makes Propeller FLC development very straightforward, especially because it
already does most of the complex programming for you.

This page intentionally left blank

Index

This page intentionally left blank

A
AAV (autonomous aerial vehicle), 4
Absolute clock-cycle times, reducing

dependence on, 84–88
AC motors, 100
Acknowledgment packet (ACK), 211
Ad hoc networks, 211
ADC (analog-to-digital converter), 315–317
Advanced Encryption Standard (AES), 211
AeroSIM RC flight simulator, 269–279

buddy box, 277–278
fundamental piloting skills, 269–274
running the SIM, 275–277
trainer cable, 274–275
wireless SimStick Pro, 278–279

AES (Advanced Encryption Standard), 211
Aileron, 15
Airspace ownership, 4–6
Alternating current (AC) motors, 100
Altitude measurements, 311
AMD multicore processors, 69
Amplitude modulation (AM), 130, 132
AMR (Anisotropic Magnetoresistive)

technology, 291
Analog servo motors, 161–168
Analog-to-digital converter (ADC), 315–317
Angle of attack (AOA), 115
Anisotropic Magnetoresistive (AMR)

technology, 291
Application Layer Protocol Rules, 202–203
Artificial intelligence, 321–328

basic Fuzzy Logic concepts, 321–323
Fuzzy Logic Control applications, 323–328

Artificial intelligence (Cont.):
Matlab, 324–327
ViewPort, 327–328

Atmel ATmega8L microcontroller unit, 100,
101

Atomic clocks, 198
Autonomous aerial vehicle (AAV), 4
Autonomous behavior, 320–321
AWG wire, 42

B
Balance, 13, 14
Barrel distortion, 234
BASIC Programmable Laser Ranging Host

Module EHO-1A, 318–320
Basic Stamp II development board, 8, 10–11,

318
Battery, 216

and flight time, 285–286
Lexan, 67
LiPo, 7, 39, 40, 285–286
mounting, 65–68

Battery charger, 39, 40
Battery eliminator circuit (BEC), 101, 113–114
BDC (brushed DC motors), 95
Bearing:

computing, 297–303
true vs. magnetic, 303

BearingDemo.java program, 301–303
BEC (battery eliminator circuit), 101, 113–114
Bill of material (BOM, Elev-8), 35–38
Binding for DSSS, 137–139

333

 334 I n d e x

BLDC (brushless DC motors), 95–99
Blinker1 program, 74–80

loading onto QuickStart board, 80, 81
SlowBlinker1 vs., 84

Bluetooth (BT), 136
Board of Education (BOE), 71–73, 88, 89

measuring R/C channel pulse width and
rate with, 145–155

mounting XBee modules, 206–207
software development with, 73, 74
standard servo setup for example program,

125, 126
BOM (bill of material, Elev-8), 35–38
Boom accessories, 49–52
Booms:

options for accessorizing, 49
in Y6 configuration, 18

Brushed DC motors (BDC), 95
Brushless DC motors (BLDC), 95–99
BT (Bluetooth), 136
Buddy box, 277–278
Building an Elev-8, 33–68

additional materials needed for, 37, 39–43
attach motor/boom assemblies to bottom

chassis plate, 50–52
bill of material, 35–38
boom accessories, 49–50
chassis top-plate and control-board

assemblies, 59–62
configure transmitter, 54–56
connect motors and synchronize ESCs,

57–68
control-board connections, 63–64
install quad power-distribution board, 53–55
motor-mount assembly, 47–49
motor set screws, 44
mount battery, 65–68
mount control board onto chassis, 62–63
mount propeller blades, 64–66
program electronic speed controllers, 56–58
safety precautions for, 33–34
solder motor and ESC connectors, 44–47
solder power harness together, 51–53
tools and materials needed for, 34–43

C
C language, 73, 125–127
Canny, John, 253
Canny edge detection, 253–259

Carrier waves, 129–130
CCW (counterclockwise) motors, 15–18
CCW (counterclockwise) propeller blades, 65
Center-of-gravity (CG), 14
Cessna 172S, 18, 19
Chassis:

attach motor/boom assemblies to bottom
plate, 50–52

mount control-board assembly onto, 62–63
prepare and attach top plate, 59–62

Checkered tape, 49
Chinese-manufactured ESCs, 102
Chinook CH-47, 1, 2
Civilian uses for quadcopters, 4, 5
Clock circuits (Prop chip), 69, 71
Clock timing, 82–88

crystal oscillator operations, 84, 85
RC oscillator operations, 82–84
reducing dependence on absolute clock-

cycle times, 84–88
Clockwise (CW) propeller blades, 65
Clockwise (CW) rotation, 15–18
Close-proximity detection, 304–310, 313–318
Cogs, 6, 69, 71
Compass satellites, 194
Computer-assisted flight control, in Chinook

and Osprey, 2
Configurations, 15–18
Continuous rotation (CR) servo motors, 168

converting standard servos to, 168–170
other servo motors vs., 161

Control surfaces, 18, 19
Controls (see Flight controls)
Cook, Kevin, 6
Coordinated Universal Time (UTC), 220
Counterclockwise (CCW) propeller blades,

65
Counterclockwise (CCW) rotation, 15–18
CR servo motors (see Continuous rotation

servo motors)
CRC (cyclic redundancy checks), 211
CRC (cyclic redundancy checks)

transmission, 135–136
Crystal-controlled oscillators, 69

operations with, 84, 85
PLL circuit with, 71

CS (ground control station), 243–244, 261
Curie Point, 99
Current flow, flight time and, 286
CW (clockwise) motors, 15–18

 I n d e x 335

CW (clockwise) propeller blades, 65
Cyclic redundancy checks (CRC), 211
Cyclic redundancy checks (CRC)

transmission, 135–136
Cypress Semiconductor CYRF6936

transceiver chip, 133, 136

D
D block (PID control), 26, 27
Data protocol (XBee transceivers), 209–212
DB-9 connector, 11
DC motors (see Direct current motors)
De Bothezat helicopter, 1, 2, 13
Deadband, 165, 166, 168
Deadtime, 26
Debug_Lcd program, 172
Decimal degrees, 221
Declination, 292, 303
Defuzzification, 323, 324
Delta configuration, 99
Digi International, 207, 216
Digi-peating, 211
Digital single-lens reflex (DSLR), 233
DIP (dual inline package), 71
Direct current (DC) motors, 95

brushed, 95
brushless, 95–99

Direct Sequence Spread Spectrum (DSSS),
130, 133–136

Discharge rate, flight time and, 286
DistanceDemo.java, 299–303
Disturbance effects, minimizing, 25–26
DoD (U.S. Department of Defense), 1, 193
Drag forces, 13, 14
Draganfly Innovations Inc., 2
Draganfly X-8, 3
Draganflyer, 2, 3
DSLR (digital single-lens reflex), 233
DSM2, 133
DSSS (Direct-Sequence Spread Spectrum),

 130
Dual inline package (DIP), 71
Dynamixel AS-12 digital servo, 166, 167

E
e-volo, 3
EC3 connectors, 42, 44
Eclipse IDE, 299–301

Economy video system, 233
field test of RC310 system with post

processing, 256–260
RC310 system components and capability,

244–248
Edge detection, 253–259
EEPROM, 71, 73
Einstein, Albert, 198
Electrical connection malfunctions, 35
Electrical/electronic components (Elev-8), 7–11
Electro-Optic Devices, 318
Electro-Optic Devices BASIC Programmable

Laser Ranging Host Module EHO-1A,
318–320

Electro-Optic Devices LIDAR kit ERC-2KIT,
317–318

Electromagnetic (EM) fields, 312
Electronic compass module, 290–293
Electronic speed controllers (ESCs), 100–105

BEC, 113–114
Chinese-manufactured, 102
connecting to control board, 63–64
Elev-8 propeller, motor, and ESC

experiment, 105–113
and power-distribution board, 41
programming, 56–58
purpose of, 100
soldering connectors, 44–47
synchronizing, 57–68
waveforms, 104–105

Electronics board (servo motors), 163
Elev-8 quadcopter:

30-A ESCs for, 104
adding kill switch to, 284–285
building process for (see Building an Elev-8)
CCW propeller, 16–17
controls for, 19–21
design of, 6–11
GPS positioning system of, 289
LED-lighting controller, 179–188
main electrical/electronic components, 7–11
maximum rotation for, 95
modifying, 67–68
origin of project, 6
propeller, motor, and ESC experiment,

105–113
tilting mechanism for first-person viewer,

188–191
ultrasonic sensor concerns with, 311, 312
(See also individual components)

 336 I n d e x

EM (electromagnetic) fields, 312
Enhancements and future projects:

artificial intelligence, 321–328
autonomous behavior, 320–321
formation flying, 304–318
position location, 289–303
return to home, 296, 303–304
writing to EHO-1A LCD screen, 319–320

Equator, 297
Ernst, Nick, 6
ESC_Motor_Control_Demo program, 117–124
ESCs (see Electronic speed controllers)
Exchangeable image file format (Exif), 260,

265, 266
Extensible meta language (XML), 262
EzCap video-capture module, 247–248

F
Fail-safe mode (AAVs), 4
FASST (Futuba Advanced Spread Spectrum

Technology), 137
Fast Blinker1 program, 85, 86
“Fast” RC oscillator (RCFAST) mode, 82–83
Feedback potentiometer, 162–163
FHSS (frequency-hopping spread spectrum),

130, 136–139
Field of view (FOV), 234, 237–241
First-person video (FPV), 233

geotagging GoPro Hero 3 photos, 260–267
GoPro Hero 3 camera system, 233–243
tilting mechanism for, 188–191

First-person viewer (FPV), 188
Fisheye lens, 234, 236
FL (see Fuzzy Logic)
FLC (see Fuzzy Logic Control)
Flight axes, 14–16
Flight configurations, 15–18
Flight-control board:

connecting ESCs and receiver to, 63–64
function of, 19
of Hoverfly, 6
HoverflyOPEN controller board, 7, 8
HoverflySPORT controller board, 6, 7
main processor on, 24
mounting onto chassis, 62–63
preparing and attaching, 59–62

Flight controls, 19–32
LabVIEW PID simulation, 28–32
for normal airplanes, 18–19

Flight controls (Cont.):
PID control, 24–26
PID theory, 24, 26–28
types of, 4

Flight dynamics, 13–32
basic flight principles, 13–14
basic quadcopter configurations, 15–18
flight axes, 14–16
flight controls, 18–19
quadcopter controls, 19–32

Flight simulators, 269
(See also AeroSIM RC flight simulator)

Flight time, estimating, 285–286
FM (frequency modulation), 130, 132–133
Formation flying, 304–318

close-proximity detection, 304–310, 313–318
maneuvering to maintain position, 312
motion capture, 304, 305
near-to-ground altitude measurements, 311
swarming control techniques, 304
ultrasonic sensors in, 311–318

Forward travel direction, Elev-8 indication of,
8

FOV (field of view), 234, 237–241
FPS (frames per second) rate, 236
FPV (see First-person video)
FPV (first-person viewer), 188
Frame vibrations, 312
Frames per second (FPS) rate, 236
Freescale MC13192 RF transceivers, 207, 208
Freescale S08 microprocessor, 207
Frequency-hopping spread spectrum (FHSS),

130, 136–139
Frequency modulation (FM), 130, 132–133
Functional test (XBee transceivers), 212–215
Futuba, 137, 168
Futuba Advanced Spread Spectrum

Technology (FASST), 137
Future projects (see Enhancements and future

projects)
Fuzzification, 323
Fuzzy Logic (FL), 321

basic concepts in, 321–323
Matlab toolkit, 324–327
ViewPort, 327–328

Fuzzy Logic Control (FLC), 321
applications of, 323–328
parts making up solutions, 322
stages of, 323

Fuzzy sets, 323

 I n d e x 337

G
Galileo satellites, 193
Garmin G1000 avionics suite, 18, 19
Gate control signal, 104
General-purpose input/output (GPIO) pins,

69, 205
General relativity, theory of, 198
General Robotics, Automation, Sensing, and

Perception (GRASP) Lab, University of
Pennsylvania, 303, 305

Geographic position (see Position location)
Geotagging photos, 260–267
“Glass” cockpit, 18, 19
Global Positioning System (GPS), 193

functioning of, 194–198
history of, 193–194
in position location, 289–296

(See also Real-time position display)
quadcopter GPS receiver, 198–202

Globally unique identifier (GUID), 136, 137
GLONASS, 193
Gold plating contact surfaces, 35
Google Earth, 193, 227–230, 266, 267, 299–301
GoPro Hero 3 camera system, 233–243

geotagging photos, 260–267
Silver and Black versions of, 233, 234
tilting mechanism for, 188–191

GPicSync, 264, 265, 267
GPIO (general-purpose input/output) pins,

69, 205
GPS (see Global Positioning System)
GPS Exchange Format, 262
Gracey, Ken, 6
GRASP (General Robotics, Automation,

Sensing, and Perception) Lab, University
of Pennsylvania, 303, 305

Great circle distance, 299
Ground control station (GCS), 243–244, 261
Ground station, 243–244
GUID (globally unique identifier), 136–137
Gyro Saucer, 2, 3

H
Haversine formula, 299
Heat-shrink tubing:

for ESCs, 47, 102
for motors, 47, 99

Helicopter development, 1

Hex configuration, 16
Hitec HS-311 servo, 90, 91, 163, 179
Hitec HT7022 chip, 163, 164
HMC5883.spin program, 292–296
HobbyKing 25-A ESC, 101
Honeywell Corporation, 291
Hoverfly Company, 6
HoverflyOPEN controller board, 7, 8

board mounting, 60
main sensor on, 22–24

HoverflySPORT controller board, 6, 7
Hub (Prop chip), 69, 71
Hub memory, 71

I
I block (PID control), 26, 27
I2 C (Inter-Integrated Circuit interface),

158–159
IDE (integrated development environment),

299–301, 318
Indian Regional Navigation Satellite System

(IRNSS), 194
Information and Assembly Guide (Elev-8), 33
Infrared (IR) light-ranging sensors, 314–315
Integrated circuits, 129
Integrated development environment (IDE),

299–301, 318
Intel multicore processors, 69
Intelligence, surveillance, and reconnaissance

(ISR), 4
Inter-Integrated Circuit interface (I2C), 158–159
Invensense ITG-3200, MEMS 3-axis

gyroscope, 22–24
IR (infrared) light-ranging sensors, 314–315
IRNSS (Indian Regional Navigation Satellite

System), 194
ISO network layers, 209–211
ISR (intelligence, surveillance, and

reconnaissance), 4

J
jm_freqin_demo program, 150–155

K
Kill switch, 11, 68, 284–285
Kumar, Vijay, 303, 321

 338 I n d e x

L
LabVIEW (LV), 28–32
Lamarr, Hedy, 136, 137
Lateral axis, 14–16
Latitude, 203–204

coordinates, 297–298
waypoints, 320

LCD portable display, 222–225
LCD signal display, 171–172, 319–320
Lead-free solder, 34–35
LED light strips, 8, 49
LED-lighting controller (Elev-8), 179–188
LED lights, 8
Legal restrictions, 4
Lexan battery, 67
LIDAR sensor, 317–318, 320–321
Lift force, 13, 14
Line of sight, 132
LiPo battery, 7, 39, 40, 285–286
Location system, GPS-based (see Position

location; Real-time position display)
Longitude, 203–204

coordinates, 297–298
waypoints, 320

Longitudinal axis, 14–16
Longitudinal length, computing, 299–301
Loop cycle, 26
Low profile quad flat package (LQFP)

surface-mount configuration, 71
LV (LabVIEW), 28–32

M
MAC (media access codes), 136
Magnetic bearings, 303
Magnetic declination, 303
Magnetic deviation, 303
Magnetoresistance, 291
Mamdani FLCs, 324
Mapping, 320–321
Materials (Elev-8) (see Tools and materials

(Elev-8))
Matlab, 324–327
MAV (micro aerial vehicle), 4
MaxBotix HRLV-Max Sonar EZ1 MB1013,

313–314
Maximum payload, 279–284
McPhalen, Jon “JonnyMac,” 151
MCU (microcontroller unit), 100, 101
Media access codes (MAC), 136

Metal-oxide-semiconductor field-effect
transistors (MOSFETs), 103, 104

Micro aerial vehicle (MAV), 4
Microcontroller unit (MCU), 100, 101
Microcontrollers, 129
Military use of quadcopters, 4
Million instructions per second (MIPS), 71
Mitsubishi M51660L chip, 163–165
MoCap (motion capture video), 304, 305
Modifying Elev-8 kit, 8, 10–11
Modulation, 130–133

Direct-Sequence Spread Spectrum,
133–136

noise, 131–133
Modus Ponens (MP), 321, 323
MOSFETs (metal-oxide-semiconductor

field-effect transistors), 103, 104
Motion capture video (MoCap), 304, 305
Motor(s), 95–99

AC, 100
attaching to bottom chassis plate, 50–52
BDC, 95
BLDC, 95–99
connecting, 57–68
CW and CCW, 16–18
DC, 95–99
Elev-8 propeller, motor, and ESC

experiment, 105–113
soldering, 44–47
wiring, 98–99
(See also Servo motors)

Motor mount assembly, 47–49
Motor set screws, 44
Motor speed, 19

(See also Electronic speed controllers
(ESCs))

Moving map display, 227–230
MP (Modus Ponens), 321, 323
myDancebot.com, 327

N
National Marine Electronics Association

(NMEA) protocol, 194, 202–204
Near-to-ground altitude measurements, 311
Neodym permanent magnets, 99
NMEA (National Marine Electronics

Association) protocol, 194, 202–204
No Sensor Dead Zone, 314
Noise, 131–133

 I n d e x 339

O
Object-oriented (OO) programming, 73
Octo configuration, 16
1 Center Servos program, 88–91
OO (object-oriented) programming, 73
OpenGPS Tracker, 261, 262
Optical tachometer, 107, 108
Oscilloscopes, 145

PicoScope 3406B, 87, 88
purpose of, 104
USB oscilloscope, 272–274

Osprey V-22, 1, 2
OSRAM SPL PL85 LIDAR-capable laser-pulse

diode, 318
Outrunner motors, 96

P
P block (PID control), 26, 27
Pairing for DSSS, 137–139
PAN (personal area network), 136, 209
Parallax Compass Model HMC5883L,

290–293
Parallax Inc., 6

assembly instructions from, 33
kit of parts from, 8

Parallax OBEX forum, 212
Parallax Ping sensor, 305–311
Parallax PMB-688 GPS receiver, 198–202
Parallax Propeller chip (Prop), 6, 69–94

ADCs of, 315
architecture of, 69–73
C language development environment for,

125
clock timing, 82–88
as main processor, 24
porting to QuickStart board, 80, 81
programming tools, 73
Propeller Spin Tool, 73–80
pulse-width modulation, 88–94
Spin Language, 73

Parallax Propeller User’s Manual, 73
Parallax XBee SIP Adapter, 206
Parsed GPS messages, 204
PASM (Propeller Assembly Language),

73
Path length, computing, 297–303
Payload, maximum, 279–284
PCB (printed circuit board) traces, 41–42
PCM (pulse-coded modulation), 130

Percent overshoot, 26
Performance characteristics, creating set of,

116–117
Performance measurements, 279–286

for control systems, 25–26
flight time, 285–286
maximum payload, 279–284

Permanent magnets (PMs), 96, 99
Personal area network (PAN), 136, 209
Phase-locked loop (PLL) circuit, 71
Phase modulation (PM), 130, 133
Philips Company, 159
PicoScope 3406B oscilloscope, 87, 88
PID (see Proportional integral derivative)
Piloting skills, 269–274
Ping sensor, 305–311
Ping_Demo_w_PST.spin program, 306–309
Pitch, 15

control surfaces, 18
controlling, 21
in hover state, 21, 22
of propellers, 17

PLL (phase-locked loop) circuit, 71
Plus configuration, 15, 16
PM (phase modulation), 130, 133
PMs (permanent magnets), 96, 99
PN (pseudorandom noise) packet

transmission, 135
Portable location display, 222–225
Position location, 289–303

computing path length and bearing,
297–303

electronic compass module, 290–293
GPS module for, 289, 290
test program, 292–296
(See also Formation flying; Real-time

position display)
Post-processing software:

field test of RC310 system with, 256–260
video systems, 248–256

Power-distribution board, 41, 53–54
Power-distribution cable harness, 42, 51–53
PPM (pulse-position modulation), 130, 131
PreciseBlinker1 program, 85–87
Prime Meridian, 297
Printed circuit board (PCB) traces, 41–42
Process variables, 24
Programming:

C language, 125–127
ESCs, 56–58

 340 I n d e x

Programming (Cont.):
object-oriented, 73
Propeller Spin Tool, 73–80
Spin Language, 73
(See also specific programs)

Programming tools, 73
Prop (see Parallax Propeller chip)
PropBOE Servos program, 88, 90–94
Propeller(s), 114–116

balancing, 64–65
on CW and CCW motors, 16–18
efficiency of, 115
Elev-8 propeller, motor, and ESC

experiment, 105–113
mounting, 64–66
selecting, 115–116

Propeller Assembly Language (PASM), 73
Propeller chip (see Parallax Propeller chip)
Propeller Integrated Explorer, 74
Propeller Mini module, 204–205
Propeller Serial Terminal (PSerT) program,

146–150, 200
Propeller Spin Tool (PST), 73–80
Proportional integral derivative (PID), 24–32

FLC controllers as PID controllers, 324
LabVIEW PID simulation, 28–32
PID block diagram, 26–27
PID control, 24–26
theory, 24, 26–28

Propulsors, 95–128
battery eliminator circuit, 113–114
comprehensive analysis of, 116–124
electronic speed controller, 100–105
motors, 95–99
propeller, motor, and ESC experiment,

105–113
propellers, 114–116

PSerT (Propeller Serial Terminal) program,
146–150, 200

Pseudorandom noise (PN) packet
transmission, 135

PST (Propeller Spin Tool), 73–80
Pulse-coded modulation (PCM), 130
Pulse-position modulation (PPM), 130, 131
Pulse-stretcher gain, 166
Pulse-width modulation (PWM), 88–94

channels for, 100
and PPM, 130, 131

PWM2C_SIGDemo program, 146–150

Q
Quad flat no-leads (QFN) carrier format,

71
Quad power-distribution board, installing,

53–55
Quadcopter (quadrotor), 1–6

descriptors associated with, 4
history of, 1–3
uses of, 4–6
(See also specific topics)

QuickStart board, porting to, 80, 81

R
Radio-controlled (R/C) systems, 129–160

carrier waves, 129–130
Direct-Sequence Spread Spectrum,

133–136
experimental demonstration of, 139–145
frequency-hopping spread spectrum,

136–139
Gyro Saucer 1, 2, 3
measuring R/C channel pulse width and

rate with BOE, 145–155
for model aircraft, 129
modulation, 130–133
and noise, 131–133
number of rotors on, 3
telemetry, 155–159

Radio-frequency transceiver module, 205–207
(See also XBee transceivers)

Range check:
Hero 3 WiFi, 241–243
XBee transceivers, 216

RC (resistor/capacitor) filters, 312
RC (resistor-capacitor) oscillator, 69, 82–84
R/C systems (see Radio-controlled systems)
RC310 camera, 244–248

features and specifications, 246, 247
field test with post processing, 256–260
high-resolution image, 257, 259–260

RCFAST (“fast” RC oscillator) mode, 82–83
Real-time position display, 193–231

complete GPS system for, 216–227
GPS basics, 193–198
mounting transmitter XBee node, 225–227
moving map system, 227–230
NMEA protocol for, 202–204
portable display, 222–225

 I n d e x 341

Real-time position display (Cont.):
and Propeller Mini module, 204–205
quadcopter GPS receiver, 198–202
XBee data protocol, 209–212
XBee functional test, 212–215
XBee hardware, 207–209
XBee radio-frequency transceiver module,

205–207
XBee range check, 216
(See also Position location)

Real-time video surveillance, limitations or
constraints on, 5

Receivers:
connecting to control board, 63–64
GPS, 194, 198–202
(See also Transceivers)

Relativity, theories of, 198
Remotely operated aircraft (ROA), 4
Remotely piloted vehicle (RPV), 4
Resistor/capacitor (RC) filters, 312
Resistor-capacitor (RC) oscillator, 69, 82–84
Return to home, 296, 303–304
Revolutions per minute (r/min), 17
Rise time, 26
ROA (remotely operated aircraft), 4
RoboRealm, 248–256
Roll, 15

control surfaces, 18
in hover state, 22

Rotational motion:
associated with axes, 14–16
clockwise or counterclockwise, 15–18

Rotational speed, flight path and, 13
Rotors, 96, 97
Routing, 211
RPV (remotely piloted vehicle), 4
RS (set/reset) flip-flop, 165
Rule set (FL), 323
RX_demo program, 172–179

S
Safety precautions:

kill switch, 11, 68, 284–285
when building Elev-8, 33–34

Satellites, GPS, 193
Self-healing mesh, 211
Sensor Minimum Distance, 314
Servo horn, 163

Servo motor control:
Elev-8 LED-lighting controller, 179–188
pulse-width modulation, 88–94
R/C signal display system, 170–179
tilting mechanism for first-person viewer,

188–191
Servo motors:

continuous rotation, 161, 168–170
digital, 166–168
evolution of, 129
standard R/C analog, 161–168

Servo32v6 program, 172, 179
Set/reset (RS) flip-flop, 165
Settling time, 26
7805 regulator chips, 113, 114
Sharp GP2D12, 314–315
Signal display system, 170–179
SimpleIDE, 125–127
SimStick Pro, 278–279
Simulator programs, 269

(See also AeroSIM RC flight simulator)
Sinnott, Roger, 299
Situational display (see Real-time position

display)
Slo-Flyer LP 10047, 17
Slo-Flyer Pusher LP 10047 SFP, 16–17
SlowBlinker1 program, 83–84
Snapshot.com, 237
SOC (state of charge), 285
Soldering, 34–35
SOP (start of packet) transmission, 135
Space-time continuum, 198
Special Purpose Register (SPR), 93
Special relativity, theory of, 198
Spektrum AR8000 receiver, 7, 39
Spektrum DX-8 R/C transmitter, 19–21, 39

configuring, 54–56
DSSS in, 133
maximum contact output of, 132

Spektrum telemetry brushless r/min sensor,
42, 43

Spektrum TM1000 telemetry transmitter, 42,
43, 155–159

Spin Language, 71, 73
SPR (Special Purpose Register), 93
Standard R/C analog servo motors, 161–168
Start of packet (SOP) transmission, 135
State of charge (SOC), 285
Stators, 97–99

 342 I n d e x

Steady-state error, 26
Stone, Darren, 237
Sugeno FLCs, 324
Swarm flying (see Formation flying)
Swarming control techniques, 304–305

T
Tachometer, optical, 107, 108
Tactical deployments, quadcopters in, 4
Technology, Entertainment, Design (TED)

talks, 304, 305, 321
Telemetry:

Spektrum telemetry brushless r/min
sensor, 42, 43

Spektrum TM1000 telemetry transmitter,
42, 43, 155–159

Telephoto, 237
Tesla, Nikola, 129
Thomson, William (Lord Kelvin), 291
Thrust forces, 13, 14, 95
Tilting mechanism, for first-person viewer,

188–191
Timing (see Clock timing)
Tools and materials (Elev-8), 34–43

additional materials, 37, 39–43
bill of material, 35–38

Torque:
and pitch, 17
unbalanced, 18
and yaw, 16

Trainer cable, 274–275
Training, 269

(See also AeroSIM RC flight simulator)
Transceivers, 205–207

Cypress Semiconductor CYRF6936
transceiver chip, 133, 136

Freescale MC13192, 207, 208
XBee, 205–216, 225–227

Transistors, 129
Transmitter:

configuring, 54–56
Spektrum DX-8, 19–21
Spektrum TM1000 telemetry, 42, 43
(See also Transceivers)

Trial and error method (PID control), 28
True bearings, 303
Tuning, 27
Turnigy board 25-A ESC, 103

Turns:
in normal airplanes, 19
rotations controlling, 15

U
UART (Universal Asynchronous Receiver

Transmitter), 199
UAVs (uninhabited aerial vehicles), 4
Ultrasonic sensors:

for close-proximity flying, 311–318
concerns with, 311, 312

Uninhabited aerial vehicles (UAVs), 4
United States v. Causby, 4–6
Universal Asynchronous Receiver

Transmitter (UART), 199
U.S. airspace, ownership of, 4–6
U.S. Army, 1
U.S. Department of Defense (DoD), 1, 193
UTC (Coordinated Universal Time), 220

V
Vertical axis, 14–16
VFCS (see Virtual flight-control system)
Video surveillance, limitations or constraints

on, 5
Video systems, 233–268

economy system, 244–248, 256–260
field test of RC310 system with post

processing, 256–260
first-person video, 233–243, 260–267
GoPro Hero 3 camera system, 233–243,

260–267
ground station, 243–244
post-processing software, 248–260

ViewPort Fuzzy Logic functions, 327–328
Virtual flight-control system (VFCS), 289, 296,

303
Virtual maps, creating, 320–321
Volocopter, 3

W
Waypoints, 320
Weight, 13

and center of gravity, 13-14
distribution of, 13, 14
maximum payload determination, 279–284

 I n d e x 343

Wi-Fi, 134, 241–243
Williams, Jon, 151
Wiring motors, 98–99
Wright 1903 Flyer, 13, 14
Wye configuration, 99

X
X-BUS, 157–159
X configuration, 15, 16
X8 configuration, 16, 18
XBee Pro, 216
XBee Pro SV, 207
XBee transceivers:

data protocol, 209–212
functional test, 212–215
hardware, 207–209
mounting transmitter XBee node,

225–227

XBee transceivers (Cont.):
pin descriptions and functions, 209
range check, 216

XML (extensible meta language), 262

Y
Y6 configuration, 16, 18
Yaw, 15

control surfaces, 18
in hover state, 22
and torque, 16

Z
Zadeh, Lufti, 321
Zero degree line of longitude, 297
Ziegler-Nichols method (PID control), 28
ZigBee, 209–212

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	1 Introduction to Quadcopters
	A Brief History of Multirotor Helicopters
	A Matter of Definition
	How are Quadcopters Used?

	Design of the Elev-8 Quadcopter
	Main Electrical/Electronic Elev-8 Components

	Summary

	2 Quadcopter Flight Dynamics
	Flight Basics
	Flight Axes
	Basic Quadcopter Configurations
	Flight Controls

	Quadcopter Controls
	PID Control
	PID Theory
	Tuning
	LabVIEW PID Simulation

	Summary

	3 Building the Elev-8
	Introduction
	Safety
	Tools and Additional Materials
	Bill of Material
	Additional Materials
	Optional Additional Materials

	Beginning the Build
	Motor Set Screws
	Solder the Motor and ESC Connectors
	Motor Mount Assembly
	Boom Accessories
	Attach Motor/Boom Assemblies to the Bottom Chassis Plate
	Solder the Power Harness Together
	Installing the Quad Power-Distribution Board
	Configure Your Transmitter
	Programming the Electronic Speed Controllers

	Connect the Motors and Synchronize the ESCs
	Chassis Top-Plate and Control-Board Assemblies
	Mount the Control-Board Assembly onto the Chassis
	Control-Board Connections
	Mounting the Propeller Blades
	Mounting the Battery

	A Few More Comments

	4 Programming the Parallax Propeller Chip
	Introduction
	Prop Architecture
	Prop Software
	Spin Language

	Propeller Spin Tool
	Porting to the Propeller QuickStart Board
	Clock Timing
	RC Oscillator Operations
	Crystal Oscillator Operations
	Reducing Dependence on Absolute Clock-Cycle Times

	Pulse-Width Modulation and Servo Example
	Summary

	5 Quadcopter Propulsors
	Introduction
	Motors
	Electronic Speed Controller
	ESC Waveforms

	Propeller, Motor, and ESC Experiment
	Running the Experiment
	Experimental Results

	Battery Eliminator Circuit
	Propellers
	Comprehensive Quadcopter Analysis
	ESC_Motor_Control_Demo Analysis

	A Brief Introduction to the C Language
	Summary

	6 Radio-Controlled Systems and Telemetry
	Introduction
	Evolution of Model R/C Systems
	Carriers and Modulation
	Noise

	Direct-Sequence Spread Spectrum
	Automatic Selection of Dual Transmit Channels
	Switching Channels for Every Data Frame Transmitted
	Transmission of SOP and PN Packets
	Transmission of Two Sets of Cyclic Redundancy Checks
	Transmission of the GUID

	Frequency-Hopping Spread Spectrum
	Binding or Pairing

	Experimental R/C System Demonstration
	Measuring R/C Channel Pulse Width and Rate with the BOE
	BOE Pulse-Width Measurements
	BOE Pulse-Rate Measurements

	Telemetry
	Summary

	7 Servo Motors and Extending the Servo Control System
	Introduction
	Exploring a Standard R/C Analog Servo Motor
	The Digital Servo
	Continuous Rotation Servos
	R/C Signal Display System
	Elev-8 LED-Lighting Controller
	Tilting Mechanism for a First-Person Viewer
	Summary

	8 GPS and a Real-Time Situational Display
	Introduction
	GPS Basics
	Brief GPS history
	How GPS Functions

	Quadcopter GPS Receiver
	GPS Receiver UART Communications
	Initial GPS Receiver Test

	NMEA Protocol
	Latitude and Longitude Formats
	Parsed GPS Message

	Propeller Mini
	Radio-Frequency Transceiver Module
	XBee Hardware
	XBee Data Protocol
	XBee Functional Test
	XBee Range Check

	Complete GPS Systems
	Portable Display
	Mounting the Transmitter XBee Node

	Moving Map System
	Monitoring the Quadcopter Position with the Google Earth Application

	Summary

	9 Airborne Video Systems
	Introduction
	GoPro Hero 3 Camera System
	Hero 3 WiFi-Range Test

	Ground Station
	Economy Video System
	Post-Processing Software
	RoboRealm

	Field Test of the RC310 System with Post Processing
	Higher Resolution Test Image

	Geotagging GoPro Hero 3 Photos
	Geotag Test Run

	Summary

	10 Training Tutorial and Performance Checks
	Introduction
	Developing Fundamental Quadcopter Piloting Skills
	The Trainer Cable
	Running the SIM
	The Buddy Box
	Wireless SimStick Pro
	Performance Measurements
	Determining Maximum Payload
	Test Results

	Kill Switch
	Estimating Flight Time
	Summary

	11 Enhancements and Future Projects
	Introduction
	Position Location and Return to Home Operation
	Electronic Compass Module

	Computing Path Length and Bearing Using Latitude and Longitude Coordinates
	Computing Longitudinal Length
	Computing Bearing

	Return-to-Home Flight Scenario
	Swarm or Formation Flying
	Motion Capture
	Close-Proximity Detection
	Near-to-Ground Altitude Measurements
	Ultrasonic Sensor Concerns
	Maneuvering the Quadcopter to Maintain Its Formation Position
	Other Close-Proximity Sensors

	Writing to the EHO-1A LCD Screen
	Communicating with Peripheral Modules

	Autonomous Behavior
	Artificial Intelligence
	Some Basic FL Concepts

	Quadcopter FLC Applications
	Matlab[sub(®)]
	ViewPort™ Fuzzy Logic Functions

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

